Theoretical research on cascaded terahertz difference-frequency generation based on sphalerite crystals

Jing-hui Li , Xi-fu Li , Hui-yun Zhang , Yu-ping Zhang , Mayilamu Musideke , Jian-quan Yao

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (5) : 389 -392.

PDF
Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (5) : 389 -392. DOI: 10.1007/s11801-012-2236-3
Article

Theoretical research on cascaded terahertz difference-frequency generation based on sphalerite crystals

Author information +
History +
PDF

Abstract

A theoretical model of cascaded terahertz (THz) difference-frequency generation is established based on one-dimensional coupled-wave equations. The relationships between sphalerite crystals’ wave vector mismatches and difference-frequency pump waves are analyzed. To produce terahertz wave with the frequency of 1.5 THz, 80-order cascaded difference-frequency is applied. By introducing crystal absorption, we calculate the optimum crystal length and pump frequency under actual circumstances. It is found that Stokes waves dominate the terahertz waves output in cascaded progress, and cascaded difference-frequency can increase the photon conversion efficiency obviously.

Keywords

GaAs / ZnTe / Pump Wave / Stokes Wave / Terahertz Wave

Cite this article

Download citation ▾
Jing-hui Li, Xi-fu Li, Hui-yun Zhang, Yu-ping Zhang, Mayilamu Musideke, Jian-quan Yao. Theoretical research on cascaded terahertz difference-frequency generation based on sphalerite crystals. Optoelectronics Letters, 2012, 8(5): 389-392 DOI:10.1007/s11801-012-2236-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

CookD. J., HochstrasserR. M.. Opt. Lett., 2000, 25: 1210

[2]

ShiW., DingY. J.. Appl. Phys. Lett., 2003, 83: 848

[3]

TanabeT., SutoK., NishizawaJ., KimuraT., SaitoK.. J. Appl. Phys., 2003, 93: 4610

[4]

StausC., KuechT., McCaughanL.. Opt. Express, 2008, 16: 13296

[5]

TochitskyS. T., SungC., TrubnickS. E., JoshiC., VodopyanovK. L.. J. Opt. Soc. Am. B, 2007, 24: 2509

[6]

CaoX.-l., YaoJ.-q., ZhuN.-n., XuD.. Optoelectronics Letters, 2012, 8: 229

[7]

MiyamotoK., OhnoS., FujiwaraM., MinamideH., HashimotoH., ItoH.. Opt. Express, 2009, 17: 14832

[8]

K. Miyamoto, H. Minamide, M. Fujiwara, H. Hashimoto and H. Ito, Coherent Tunable Monochromatic Terahertz Wave Generation using N-Benzyl-2-methyl-4-nitroaniline (BNA) Crystal, Proc. of SPIE, 6875 (2008).

[9]

KawaseK., HatanakaT., TakahashiH., NakamuraK., TaniuchiT., ItoH.. Opt. Lett., 2000, 25: 1714

[10]

TomitaI., SuzukiH., ItoH., TakenouchiH., AjitoK., RungsawangR., UenoY.. Appl. Phys. Lett., 2006, 88: 071118

[11]

JiangY., DingY. J., ZotovaI. B.. Appl. Phys. Lett., 2008, 93: 241102

[12]

WangZ., WangY. Y., YaoJ. Q., WangP.. Acta Physica Sinica, 2009, 59: 3249

[13]

RobinsonA. L.. Science, 1974, 184: 1062

[14]

Cronin-GolombM.. Opt. Lett., 2004, 29: 2046

[15]

HattoriT., TakeuchiK.. Opt. Express, 2007, 15: 8076

[16]

ZhongK., YaoJ. Q., XuD. G., ZhangH. Y., WangP.. Acta Physica Sinica, 2011, 60: 034210

[17]

VodopyanovK. L.. Laser & Photon. Rev., 2008, 2: 11

[18]

BahouraM., HermanG. S., BarnesN. P., BonnerC. E., HigginsP. T.. Terahertz Wave Source via Difference-Frequency Mixing using Cross-Reststrahlen Band Dispersion Compensation Phase Matching: A Material Study, Proc. of SPIE, 2000, 3928: 132

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/