Practical decoy-state quantum key distribution method considering dark count rate fluctuation

Yuan-yuan Zhou , Hua Jiang , Ying-jian Wang

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (5) : 384 -388.

PDF
Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (5) : 384 -388. DOI: 10.1007/s11801-012-2026-y
Article

Practical decoy-state quantum key distribution method considering dark count rate fluctuation

Author information +
History +
PDF

Abstract

Considering fluctuant dark count rate in practical quantum key distribution (QKD) system, a new decoy-state method with one vacuum state and one weak decoy state is presented based on a heralded single photon source (HSPS). The method assumes that the dark count rate of each pulse is random and independent. The lower bound of the count rate and the upper bound of the error rate of a single photon state are estimated. The method is applied to the decoy-state QKD system with and without the fluctuation of dark count rate. Because the estimation of the upper bound of a single photon state’s error rate is stricter, the method can obtain better performance than the existing methods under the same condition of implementation.

Keywords

Dark Count / Decoy State / Single Photon State / Dark Count Rate / Weak Coherent State

Cite this article

Download citation ▾
Yuan-yuan Zhou, Hua Jiang, Ying-jian Wang. Practical decoy-state quantum key distribution method considering dark count rate fluctuation. Optoelectronics Letters, 2012, 8(5): 384-388 DOI:10.1007/s11801-012-2026-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bennett C. H. and Brassard G., Quantum Cryptography: Public Key Distribution and Coin Tossing, IEEE International Conference on Computer, Systems and Signals Processing, 175 (1984).

[2]

LoH. K., ChauH. F.. Science, 1999, 283: 2050

[3]

MayersD.. Proc. of Crypto., 1996, 96: 343

[4]

ShorP. W., PreskillJ.. Phys. Rev. Lett., 2000, 85: 441

[5]

LütkenhausN.. Phys. Rev. A, 2000, 61: 052304

[6]

TamakiK., LütkenhausN., KoashiM.. Phys. Rev. A, 2009, 80: 032302

[7]

GottesmanD., LoH. K., LütkenhausN., PreskillJ.. Quantum Inform. Comput., 2004, 4: 325

[8]

HwangW. Y.. Phys. Rev. Lett., 2003, 91: 057901

[9]

LoH. K., MaX. F., ChenK.. Phys. Rev. Lett., 2005, 94: 230504

[10]

WangX. B.. Phys. Rev. Lett., 2005, 94: 230503

[11]

WangX. B.. Phys. Rev. A, 2005, 72: 012322

[12]

PengC. Z., ZhangJ., YangD., GaoW. B., MaH. X., YinH., ZengH. P., YangT., WangX. B., PanJ. W.. Phys. Rev. Lett., 2007, 98: 010505

[13]

AdachiY., YamamotoT., KoashiM., ImotoN.. Phys. Rev. Lett., 2007, 99: 180503

[14]

WangJ., ZhangH. F., WanX., GaoY., CuiK., CaiW. Q., ChenT. Y., LiangW., JinG.. Journal of Optoelectronics · Laser, 2010, 21: 861

[15]

YinZ. Q., HanZ. F., ChenW., XuF. X., WuQ. L., GuoG. C.. Chin. Phys. Lett., 2008, 25: 3547

[16]

ZhouY. Y., ZhouX. J., GaoJ.. Optoelectron. Lett., 2010, 6: 396

[17]

ZhouY. Y., ZhouX.. J., Optoelectron. Lett., 2011, 7: 389

[18]

HuH. P., WangJ. D., HuangY. X., LiuS. H., LuW.. Acta Phys. Sin., 2010, 59: 287

[19]

CurtyM., MoroderT., MaX. F., LütkenhausN.. Phys. Rev. A, 2009, 79: 032335

[20]

CurtyM., MaX. F., QiB., MoroderT.. Phys. Rev. A, 2010, 81: 022310

[21]

XuF. X., WangS., HanZ. F., GuoG. C.. Chin. Phys. B, 2010, 19: 100312

[22]

WangX. B.. Phys. Rev. A, 2007, 75: 052301

[23]

WangX. B., PengC. Z., PanJ. W.. Appl. Phys. Lett., 2007, 90: 031110

[24]

WangX. B., PengC. Z., ZhangJ.. Yang L. and Pan J. W., Phys. Rev. A, 2008, 77: 042311

[25]

HuJ. Z., WangX. B.. Phys. Rev. A, 2010, 82: 012331

[26]

GaoX., SunS. H., LiangL. M.. Chin. Phys. Lett., 2009, 26: 100307

[27]

ZhangS. L., ZouX. B., LiK., JinC. H., GuoG. C.. Phys. Rev. A, 2007, 76: 044304

[28]

MiJ. L., WangF. Q., LinQ. Q., LiangR. S., LiuS. H.. Chin. Phys. B, 2008, 17: 1178

[29]

MaX. F., LoH. K.. New Journal of Physics, 2008, 10: 073018

[30]

GobbyC., YuanZ. L., ShieldsA. J.. Phys. Rev. Lett., 2004, 84: 3762

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/