Thermal stability of luminous YAG: Ce bulk ceramic as a remote phosphor prepared through silica-stabilizing valence of activator in air

Peng Wang, Jun Song, Hua Tian, Qi-fei Lu, Da-jian Wang

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (3) : 201-204.

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (3) : 201-204. DOI: 10.1007/s11801-012-2004-4
Article

Thermal stability of luminous YAG: Ce bulk ceramic as a remote phosphor prepared through silica-stabilizing valence of activator in air

Author information +
History +

Abstract

A prototype of YAG: Ce (Y3Al5O12) luminous bulk ceramic as a remote phosphor for white LED illumination was fabricated in air through a strategy of silica addition. With increasing the amount of silica in a specific range, the opaque sample turns to be semi-transparent. The precipitation of crystals is verified to be in pure YAG phase by X-ray diffraction (XRD). Beyond the limit of silica amount, the dominant phase of YAG crystal is found to coexist with a small amount of newly-formed Y2Si2O7, Al2O3 and the amorphous phase. The YAG crystals are with a grain size of approximately 2 μm and distribute evenly. The YAG hosts after structural modification via addition of silica result in yellow band emission of 5d → 4f transition peaked around 535 nm as excited by a blue LED, owing to the self-reduction of Ce4+ to Ce3+ even in the absence of reductive atmosphere.

Keywords

Silica Addition / Remote Phosphor / Yellow Band Emission / High Temperature Solid State Synthesis / Solid State Synthesis Procedure

Cite this article

Download citation ▾
Peng Wang, Jun Song, Hua Tian, Qi-fei Lu, Da-jian Wang. Thermal stability of luminous YAG: Ce bulk ceramic as a remote phosphor prepared through silica-stabilizing valence of activator in air. Optoelectronics Letters, 2012, 8(3): 201‒204 https://doi.org/10.1007/s11801-012-2004-4

References

[1]
ZhouL.-z., LiuH., AnB., WuF.-s., WuY.-p.. Journal of Optoelectronics · Laser, 2010, 21: 175
[2]
FujitaS., YoshiharaS., SakamotoA., YamamotoS., TanabeS.. Proc. SPIE — Int. Soc. Opt. Eng., 2005, 5941: 594111
[3]
KuoH.-C., HungC.-W., ChenH.-C., ChenK.-J., WangC.-H., SherC.-W., YehC.-C., LinC.-C., ChenC.-H., ChengY.-J.. Optics Express, 2011, 19: A930
CrossRef Google scholar
[4]
ZhuY., NarendranN.. Japanese Journal of Applied Physics, 2010, 49: 100203-1
CrossRef Google scholar
[5]
Ming-TeL., Shang-PingY., Ming-YaoL., Kuang-YuT., Sheng-ChiehT., Chih-HsuanL., Jyh-ChenC., CherngS. C.-. IEEE Photonics Technology Letters, 2010, 22: 574
CrossRef Google scholar
[6]
CherepyN., KuntzJ., TillotsonT., SpeaksD., PayneS., ChaiB., PorterchapmanY., DerenzoS.. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 579: 38
CrossRef Google scholar
[7]
MihókováE., NiklM., MarešJ. A., BeitlerováA., VeddaA., NejezchlebK., Bla·ekK., D’AmbrosioC.. Journal of Luminescence, 2007, 126: 77
CrossRef Google scholar
[8]
ZychE., BrecherC.. Journal of Luminescence, 2000, 90: 89
CrossRef Google scholar
[9]
MaQ.-l., ZongN., LuY.-f., ZhangX.-f., LiuW.-b., JiangB.-x., FengX.-q., PanY.-b., WangB.-s., BoY., PengQ.-j., CuiD.-f., XuZ.-y.. Journal of Optoelectronics · Laser, 2010, 21: 19
[10]
TachiwakiT., YoshinakaM., HirotaK., IkegamiT., YamaguchiO.. Solid State Communications, 2001, 119: 603
CrossRef Google scholar
[11]
TanabeS., FujitaS., YoshiharaS., SakamotoA., YamamotoS.. Proc. SPIE — Int. Soc. Opt. Eng., 2005, 5941: 594112
[12]
SuQ., LiangH. B., HuT. D., TaoY., LiuT.. Journal of Alloys and Compounds, 2002, 344: 132
CrossRef Google scholar
[13]
ZengQ. H., PeiZ. W., WangS. B., SuQ.. Journal of Alloys and Compounds, 1998, 275: 238
CrossRef Google scholar
[14]
ChaoW. H., WuR. J., WuT. B.. Journal of Alloys and Compounds, 2010, 506: 98
CrossRef Google scholar
[15]
TannerP. A., LiansheF., LixinN., Bing-MingC., BrikM. G.. Journal of Physics: Condensed Matter, 2007, 19: 14
CrossRef Google scholar
[16]
RevauxA., DantelleG., GeorgeN., SeshadriR., GacoinT., BoilotJ.-P.. Nanoscale, 2011, 3: 2015
CrossRef Google scholar
[17]
ReyherH. J., HausfeldN., PapeM., BaurJ., SchneiderJ.. Solid State Communications, 1999, 110: 345
CrossRef Google scholar
[18]
KasuyaR., IsobeT., KumaH., KatanoJ.. J. Phys. Chem. B, 2005, 109: 22126
CrossRef Google scholar
[19]
XuJ., DongY. J., ZhouG. Q., ZhaoG. J., SuF. L., SuL. B., LiH. J., SiJ. L.. Opt. Mater., 2007, 30: 234
CrossRef Google scholar
[20]
DongY., ZhouG., XuJ., ZhaoG., SuF., SuL., LiH., SiJ., QianX., LiX.. Journal of Crystal Growth, 2006, 286: 476
CrossRef Google scholar
[21]
ZorenkoY., ZorenkoT., GorbenkoV., PavlykB., LagutaV., NiklM., KolobanovV., SpasskyD.. Radiation Measurements, 2010, 45: 419
CrossRef Google scholar
[22]
ZhaoW., AnghelS., ManciniC., AmansD., BoulonG., EpicierT., ShiY., FengX. Q., PanY. B., ChaniV., YoshikawaA.. Opt. Mater., 2011, 33: 684
CrossRef Google scholar
[23]
ZhiwuP., QiangS., JiyuZ.. Journal of Alloys and Compounds, 1993, 198: 51
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (Nos.50872091, 50802062, and 21076161), and the Key Discipline for Materials Physics and Chemistry of Tianjin in China (Nos.10SYSYJC28100, 2006ZD30, and 06YFJMJC0230).

Accesses

Citations

Detail

Sections
Recommended

/