Thermal stability of luminous YAG: Ce bulk ceramic as a remote phosphor prepared through silica-stabilizing valence of activator in air

Peng Wang , Jun Song , Hua Tian , Qi-fei Lu , Da-jian Wang

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (3) : 201 -204.

PDF
Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (3) : 201 -204. DOI: 10.1007/s11801-012-2004-4
Article

Thermal stability of luminous YAG: Ce bulk ceramic as a remote phosphor prepared through silica-stabilizing valence of activator in air

Author information +
History +
PDF

Abstract

A prototype of YAG: Ce (Y3Al5O12) luminous bulk ceramic as a remote phosphor for white LED illumination was fabricated in air through a strategy of silica addition. With increasing the amount of silica in a specific range, the opaque sample turns to be semi-transparent. The precipitation of crystals is verified to be in pure YAG phase by X-ray diffraction (XRD). Beyond the limit of silica amount, the dominant phase of YAG crystal is found to coexist with a small amount of newly-formed Y2Si2O7, Al2O3 and the amorphous phase. The YAG crystals are with a grain size of approximately 2 μm and distribute evenly. The YAG hosts after structural modification via addition of silica result in yellow band emission of 5d → 4f transition peaked around 535 nm as excited by a blue LED, owing to the self-reduction of Ce4+ to Ce3+ even in the absence of reductive atmosphere.

Keywords

Silica Addition / Remote Phosphor / Yellow Band Emission / High Temperature Solid State Synthesis / Solid State Synthesis Procedure

Cite this article

Download citation ▾
Peng Wang, Jun Song, Hua Tian, Qi-fei Lu, Da-jian Wang. Thermal stability of luminous YAG: Ce bulk ceramic as a remote phosphor prepared through silica-stabilizing valence of activator in air. Optoelectronics Letters, 2012, 8(3): 201-204 DOI:10.1007/s11801-012-2004-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ZhouL.-z., LiuH., AnB., WuF.-s., WuY.-p.. Journal of Optoelectronics · Laser, 2010, 21: 175

[2]

FujitaS., YoshiharaS., SakamotoA., YamamotoS., TanabeS.. Proc. SPIE — Int. Soc. Opt. Eng., 2005, 5941: 594111

[3]

KuoH.-C., HungC.-W., ChenH.-C., ChenK.-J., WangC.-H., SherC.-W., YehC.-C., LinC.-C., ChenC.-H., ChengY.-J.. Optics Express, 2011, 19: A930

[4]

ZhuY., NarendranN.. Japanese Journal of Applied Physics, 2010, 49: 100203-1

[5]

Ming-TeL., Shang-PingY., Ming-YaoL., Kuang-YuT., Sheng-ChiehT., Chih-HsuanL., Jyh-ChenC., CherngS. C.-. IEEE Photonics Technology Letters, 2010, 22: 574

[6]

CherepyN., KuntzJ., TillotsonT., SpeaksD., PayneS., ChaiB., PorterchapmanY., DerenzoS.. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 579: 38

[7]

MihókováE., NiklM., MarešJ. A., BeitlerováA., VeddaA., NejezchlebK., Bla·ekK., D’AmbrosioC.. Journal of Luminescence, 2007, 126: 77

[8]

ZychE., BrecherC.. Journal of Luminescence, 2000, 90: 89

[9]

MaQ.-l., ZongN., LuY.-f., ZhangX.-f., LiuW.-b., JiangB.-x., FengX.-q., PanY.-b., WangB.-s., BoY., PengQ.-j., CuiD.-f., XuZ.-y.. Journal of Optoelectronics · Laser, 2010, 21: 19

[10]

TachiwakiT., YoshinakaM., HirotaK., IkegamiT., YamaguchiO.. Solid State Communications, 2001, 119: 603

[11]

TanabeS., FujitaS., YoshiharaS., SakamotoA., YamamotoS.. Proc. SPIE — Int. Soc. Opt. Eng., 2005, 5941: 594112

[12]

SuQ., LiangH. B., HuT. D., TaoY., LiuT.. Journal of Alloys and Compounds, 2002, 344: 132

[13]

ZengQ. H., PeiZ. W., WangS. B., SuQ.. Journal of Alloys and Compounds, 1998, 275: 238

[14]

ChaoW. H., WuR. J., WuT. B.. Journal of Alloys and Compounds, 2010, 506: 98

[15]

TannerP. A., LiansheF., LixinN., Bing-MingC., BrikM. G.. Journal of Physics: Condensed Matter, 2007, 19: 14

[16]

RevauxA., DantelleG., GeorgeN., SeshadriR., GacoinT., BoilotJ.-P.. Nanoscale, 2011, 3: 2015

[17]

ReyherH. J., HausfeldN., PapeM., BaurJ., SchneiderJ.. Solid State Communications, 1999, 110: 345

[18]

KasuyaR., IsobeT., KumaH., KatanoJ.. J. Phys. Chem. B, 2005, 109: 22126

[19]

XuJ., DongY. J., ZhouG. Q., ZhaoG. J., SuF. L., SuL. B., LiH. J., SiJ. L.. Opt. Mater., 2007, 30: 234

[20]

DongY., ZhouG., XuJ., ZhaoG., SuF., SuL., LiH., SiJ., QianX., LiX.. Journal of Crystal Growth, 2006, 286: 476

[21]

ZorenkoY., ZorenkoT., GorbenkoV., PavlykB., LagutaV., NiklM., KolobanovV., SpasskyD.. Radiation Measurements, 2010, 45: 419

[22]

ZhaoW., AnghelS., ManciniC., AmansD., BoulonG., EpicierT., ShiY., FengX. Q., PanY. B., ChaniV., YoshikawaA.. Opt. Mater., 2011, 33: 684

[23]

ZhiwuP., QiangS., JiyuZ.. Journal of Alloys and Compounds, 1993, 198: 51

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/