Design of large-core single-mode Yb3+-doped photonic crystal fiber

Xing-tao Zhao , Yi Zheng , Xiao-xu Liu , Gui-yao Zhou , Zhaolun Liu , Lan-tian Hou

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (3) : 212 -215.

PDF
Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (3) : 212 -215. DOI: 10.1007/s11801-012-2002-6
Article

Design of large-core single-mode Yb3+-doped photonic crystal fiber

Author information +
History +
PDF

Abstract

The effective index of the cladding fundamental space-filling mode in photonic crystal fiber (PCF) is simulated by the effective index method. The variation of the effective index with the structure parameters of the fiber is achieved. For the first time, the relations of the V parameter of Yb3+-doped PCF with the refractive index of core and the structure parameters of the fiber are provided. The single-mode characteristics of large-core Yb3+-doped photonic crystal fibers with 7 and 19 missing air holes in the core are analyzed. The large-core single-mode Yb3+-doped photonic crystal fibers with core diameters of 50 μm, 100 μm and 150 μm are designed. The results provide theory instruction for the design and fabrication of fiber.

Keywords

Versus Parameter / Hebei Province / Photonic Crystal Fiber / Effective Index / Material Refractive Index

Cite this article

Download citation ▾
Xing-tao Zhao, Yi Zheng, Xiao-xu Liu, Gui-yao Zhou, Zhaolun Liu, Lan-tian Hou. Design of large-core single-mode Yb3+-doped photonic crystal fiber. Optoelectronics Letters, 2012, 8(3): 212-215 DOI:10.1007/s11801-012-2002-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

JeongY., SahuJ. K., PayneD. N.. Electron. Lett., 2004, 40: 470

[2]

DaiZ. Y., ZhangX. X., PengZ. S., LiJ. F., OuZ. H., LiuY. Z.. Journal of Optoelectronics · Laser, 2011, 22: 652

[3]

LiX. B., ChaiL., ZhangY. Y., HuM. L., HuX. Y., WangQ. Y.. Journal of Optoelectronics · Laser, 2009, 20: 260

[4]

LiH. R., SangX. Z., YuangJ. H., WangK. R., YuC. X.. Optoelectronics Letters, 2010, 6: 172

[5]

GongL., YinF. F., ChenH. W., ChenM. H., XieS. Z.. Journal of Optoelectronics · Laser, 2010, 21: 1320

[6]

DevautourM., RoyP., FévrierS., PedridoC., SandozF., RomanoV.. Applied Optics, 2009, 48: 139

[7]

ZhangX. L., LouS. Q., WangL. W.. High Power Laser and Particle Beams, 2011, 23: 2074

[8]

HeB., ZhouJ., LouQ. H., XueY. H., LiZ., WangW., DongJ. X., WeiY. R., ChenW. B.. Microwave and Optical Technology Letters, 2010, 52: 1668

[9]

DongX., XiaoH., ZhouP., WangX., MaY., GuoS., XuX.. Laser Physics, 2011, 21: 1212

[10]

ZhaoX. T., ZhengY., LiuX. X., ZhouG. Y., ShenJ. P., ZhouC., MingX. C., HouL. T.. Journal of Optoelectronics · Laser, 2011, 22: 1301

[11]

GuoY. Y., HouL. T., HanY.. Journal of Optoelectronics · Laser, 2009, 20: 1614

[12]

SchmidtO., RothhardtJ., EidamT., RöserF., LimpertJ., TünnermannA.. Opt. Express, 2008, 16: 3918

[13]

BoulletJ., ZaouterY., DesmarchelierR., CazauxM., SalinF., SabyJ., Bello-DouaR., CormierE.. Opt. Express, 2008, 16: 17891

[14]

ChenW., LiS. Y., WangD. X., LuoW. Y., HuangW. J., KeY. L.. Journal of Optoelectronics · Laser, 2010, 21: 1449

[15]

KamalK., SinhaR. K., VarshneyA. D.. Optics and Lasers in Engineering, 2012, 50: 182

[16]

AdemgilH., HaxhaS.. Optics Communications, 2012, 285: 1514

[17]

SharmaR., JanyaniV., BhatnagarS. K.. Journal of Modern Optics, 2011, 58: 604

[18]

ZhaoX. T., HouL. T., LiuZ. L., WangW., WeiH. Y., MaJ. R.. Acta Phys. Sin., 2007, 56: 2275

[19]

WeiD. B., ZhouG. Y., ZhaoX. T., YuanJ. H., MengJ., WangH. Y., HouL. T.. Acta Phys. Sin., 2008, 57: 3011

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/