Design of high-sensitivity metal-coated LPFG sensor based on material dispersion

Yan-jun Shi , Zheng-tian Gu

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (4) : 269 -272.

PDF
Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (4) : 269 -272. DOI: 10.1007/s11801-012-2001-7
Article

Design of high-sensitivity metal-coated LPFG sensor based on material dispersion

Author information +
History +
PDF

Abstract

A high-sensitivity metal-coated long-period fiber grating (LPFG) sensor based on material dispersion is designed. Based on the coupled mode theory, the influence of the material dispersion on the dual-peak characteristics of the metal-coated LPFG is studied. After considering the material dispersion, the jumping region of the dual-resonant-wavelength shifts toward the thinner film thickness, and the sensitivity of the dual-peak metal-coated LPFG sensor to liquid refractive index (RI) can be obtained to supply accurate parameter combinations. Experimentally, two kinds of silver-coated LPFGs with different film thicknesses and grating periods are fabricated to monitor the salt solution, and the sensitivities of these two sensors are compared. The experimental results are consistent with the theoretical analyses. This work has been supported by the National Natural Science Foundation of China (No.60777035), the Scientific Research Key Project Fund (No. 208040), the Innovation Program of Shanghai Municipal Education Commission (No.11ZZ131), and the Shanghai Leading Academic Discipline Project (No.S30502).

Keywords

Grating Period / Silver Film / Resonant Wavelength / Material Dispersion / Couple Mode Theory

Cite this article

Download citation ▾
Yan-jun Shi, Zheng-tian Gu. Design of high-sensitivity metal-coated LPFG sensor based on material dispersion. Optoelectronics Letters, 2012, 8(4): 269-272 DOI:10.1007/s11801-012-2001-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LiX., ZhuY., MeiH., WangC., WeiW.. Journal of Optoelectronics Laser, 2011, 22: 980

[2]

ZhaoJ., TongZ., YangX., YuH., YaoB.. Journal of Optoelectronics Laser, 2010, 21: 1777

[3]

VermaR. K., GuptaB. D.. J. Opt. Soc. Am. A, 2010, 27: 846

[4]

LuY.-C., HuangW.-P., JianS.-S.. Journal of Lightwave Technology, 2009, 27: 4804

[5]

TangJ.-L., WangJ.-N.. Sensors, 2008, 8: 171

[6]

ShevchenkoY. Y., AlbertJ.. Optics Letters, 2007, 32: 211

[7]

HsuK.-C., ChenN.-K., LeeC.-L., ChihY.-S., Pei-Jhuang, LaiY., LinC.. Journal of Lightwave Technology, 2010, 28: 1057

[8]

SchusterT., HerschelR., NeumannN., SchafferC. G.. Journal of Lightwave Technology, 2012, 30: 1003

[9]

WeiH., TongZ., WangM., JianS.. Acta Optic Sinica, 2003, 23: 931

[10]

IgaM., SekiA., WatanabeK.. Sensors and Actuators B, 2005, 106: 363

[11]

TangJ.-L., ChengS.-F., HsuW.-T., ChiangT.-Y., ChauL.-K.. Sensors and Actuators B, 2006, 119: 105

[12]

A. Iadicicco, S. Campopiano, D. Paladino, A. Cutolo, A. Cusano and W. Bock, Sensors and Microsystems: AISEM 2009 Proceedings, 133 (2009).

[13]

ErdoganT.. J. Opt. Soc. Am. A, 1997, 14: 1760

[14]

LiM., LiaoY., ShiC.. Acta Photonica Sinica, 2000, 29: 171

[15]

LiY., CuiM.. Optical Waveguide Theory and Technology, 2002, 1st edBeijing, Posts & Telecommunications Press: 157

[16]

PalikE. D.. Handbook of Optical Constants of Solids, 1985, 1st edNew York, Academic Press: 350

[17]

ReesN. D., JamesS. W., TatamR. P.. Opt. Lett., 2002, 27: 686

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/