Wavelength conversion based on nonlinear polarization rotation in gain transparent SOA

Rong-she Dou , Chong-xiu Yu , Kui-ru Wang , Yong-jun Wang , Xin-zhu Sang , Qi Zhang , Bin-bin Yan

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (4) : 289 -292.

PDF
Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (4) : 289 -292. DOI: 10.1007/s11801-012-1196-y
Article

Wavelength conversion based on nonlinear polarization rotation in gain transparent SOA

Author information +
History +
PDF

Abstract

We describe an all-optical wavelength conversion scheme for 1310 nm to 1550 nm based on nonlinear polarization rotation in a gain-transparent semiconductor optical amplifier (GT-SOA) which brings in the assistant light to improve the property of the converted light. From the SOA carrier density equations, the 1310 nm-to-1550 nm wavelength conversion scheme is analyzed by the Jones matrix. The phase shift between TE and TM modes and the converted light are simulated at bit rate of 30 Gbit/s. We also analyze the influence of the input signal power, the injected current and the assistant light power on the extinction ratio of the converted light.

Keywords

Input Signal Power / Carrier Density / Extinction Ratio / Wavelength Conversion / Probe Light

Cite this article

Download citation ▾
Rong-she Dou, Chong-xiu Yu, Kui-ru Wang, Yong-jun Wang, Xin-zhu Sang, Qi Zhang, Bin-bin Yan. Wavelength conversion based on nonlinear polarization rotation in gain transparent SOA. Optoelectronics Letters, 2012, 8(4): 289-292 DOI:10.1007/s11801-012-1196-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

NuzmanC., LeutholdJ., RyfR., ChandrasekharS., GilesC. R., NeilsonD. T.. Journal of Lightwave Technology, 2003, 21: 648

[2]

D. Apostopoulos, D. Apostolopoulos, H. Simos, D. Petrantonakis, A. Bogris, M. Spyropoulou, M. Bougioukos, K. Vyrsokinos, N. Pleros, D. Syvridis and H. Avramopoulos, A New Scheme for Regenerative 40 Gb/s NRZ Wavelength Conversion using a Hybrid Integrated SOA-MZI, Proc. of Optical Fiber Communication Conference, OThS6 (2010).

[3]

GongL., YinF.-f., ChenH.-w., ChenM.-h., XieS.-z.. Journal of Optoelectronics Laser, 2010, 21: 1320

[4]

XuC. Q., OkayamaH., KawaharaM.. Electronics Letters, 1994, 30: 2168

[5]

ChenM., TanY.-l., LiT.-s.. Optoelectronics Letters, 2010, 6: 278

[6]

GuoL. Q., ConnellyM. J.. Optics Communications, 2009, 281: 4470

[7]

SakaguchiJ., NishidaT., UenoY.. Optics Communications, 2009, 282: 1728

[8]

MartelliP., BoffiP., FerrarioM., MarazziL., ParolariP., SianoR., PusinoV., MinzioniP., CristianiI., LangrockC., FejerM. M., MartinelliM., DegiorgioV.. Opticas Express, 2009, 17: 17758

[9]

LaceyJ. P. R., PendockG. J., TuckerR. S.. IEEE Photonics Tech. Letters, 1996, 8: 885

[10]

TurkiewiczJ. P., KhoeG. D., de WaardtH.. Electronics Letters, 2005, 41: 29

[11]

Wang Yongjun and Wu Chongqing, Beijing Jiaotong University, 2009. (in Chinese)

[12]

LunX., HuangY., RenX.. Semiconductor Photonics and Technology, 2003, 9: 65

[13]

WillnerA. E., ShiehW.. Journal of Lightwave Technology, 1995, 13: 771

[14]

ChenM., YinF.-f., HeL.-n., ZhangY.-j., YangS.-g., ChenH.-w., XieS.-z.. Optoelectronics Letters, 2007, 3: 359

[15]

GuoL. Q., ConnellyM. J.. Journal of Lightwave Technology, 2007, 25: 410

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/