Wavelength conversion based on nonlinear polarization rotation in gain transparent SOA

Rong-she Dou, Chong-xiu Yu, Kui-ru Wang, Yong-jun Wang, Xin-zhu Sang, Qi Zhang, Bin-bin Yan

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (4) : 289-292.

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (4) : 289-292. DOI: 10.1007/s11801-012-1196-y
Article

Wavelength conversion based on nonlinear polarization rotation in gain transparent SOA

Author information +
History +

Abstract

We describe an all-optical wavelength conversion scheme for 1310 nm to 1550 nm based on nonlinear polarization rotation in a gain-transparent semiconductor optical amplifier (GT-SOA) which brings in the assistant light to improve the property of the converted light. From the SOA carrier density equations, the 1310 nm-to-1550 nm wavelength conversion scheme is analyzed by the Jones matrix. The phase shift between TE and TM modes and the converted light are simulated at bit rate of 30 Gbit/s. We also analyze the influence of the input signal power, the injected current and the assistant light power on the extinction ratio of the converted light.

Keywords

Input Signal Power / Carrier Density / Extinction Ratio / Wavelength Conversion / Probe Light

Cite this article

Download citation ▾
Rong-she Dou, Chong-xiu Yu, Kui-ru Wang, Yong-jun Wang, Xin-zhu Sang, Qi Zhang, Bin-bin Yan. Wavelength conversion based on nonlinear polarization rotation in gain transparent SOA. Optoelectronics Letters, 2012, 8(4): 289‒292 https://doi.org/10.1007/s11801-012-1196-y

References

[1]
NuzmanC., LeutholdJ., RyfR., ChandrasekharS., GilesC. R., NeilsonD. T.. Journal of Lightwave Technology, 2003, 21: 648
CrossRef Google scholar
[2]
D. Apostopoulos, D. Apostolopoulos, H. Simos, D. Petrantonakis, A. Bogris, M. Spyropoulou, M. Bougioukos, K. Vyrsokinos, N. Pleros, D. Syvridis and H. Avramopoulos, A New Scheme for Regenerative 40 Gb/s NRZ Wavelength Conversion using a Hybrid Integrated SOA-MZI, Proc. of Optical Fiber Communication Conference, OThS6 (2010).
[3]
GongL., YinF.-f., ChenH.-w., ChenM.-h., XieS.-z.. Journal of Optoelectronics Laser, 2010, 21: 1320
[4]
XuC. Q., OkayamaH., KawaharaM.. Electronics Letters, 1994, 30: 2168
CrossRef Google scholar
[5]
ChenM., TanY.-l., LiT.-s.. Optoelectronics Letters, 2010, 6: 278
CrossRef Google scholar
[6]
GuoL. Q., ConnellyM. J.. Optics Communications, 2009, 281: 4470
CrossRef Google scholar
[7]
SakaguchiJ., NishidaT., UenoY.. Optics Communications, 2009, 282: 1728
CrossRef Google scholar
[8]
MartelliP., BoffiP., FerrarioM., MarazziL., ParolariP., SianoR., PusinoV., MinzioniP., CristianiI., LangrockC., FejerM. M., MartinelliM., DegiorgioV.. Opticas Express, 2009, 17: 17758
CrossRef Google scholar
[9]
LaceyJ. P. R., PendockG. J., TuckerR. S.. IEEE Photonics Tech. Letters, 1996, 8: 885
CrossRef Google scholar
[10]
TurkiewiczJ. P., KhoeG. D., de WaardtH.. Electronics Letters, 2005, 41: 29
CrossRef Google scholar
[11]
Wang Yongjun and Wu Chongqing, Beijing Jiaotong University, 2009. (in Chinese)
[12]
LunX., HuangY., RenX.. Semiconductor Photonics and Technology, 2003, 9: 65
[13]
WillnerA. E., ShiehW.. Journal of Lightwave Technology, 1995, 13: 771
CrossRef Google scholar
[14]
ChenM., YinF.-f., HeL.-n., ZhangY.-j., YangS.-g., ChenH.-w., XieS.-z.. Optoelectronics Letters, 2007, 3: 359
CrossRef Google scholar
[15]
GuoL. Q., ConnellyM. J.. Journal of Lightwave Technology, 2007, 25: 410
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (No.61077014).

Accesses

Citations

Detail

Sections
Recommended

/