Effects of the ZnO buffer layer and Al proportion on AZO film properties

Cheng-hua Sui , Bin Liu , Tian-ning Xu , Bo Yan , Gao-yao Wei

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (3) : 205 -208.

PDF
Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (3) : 205 -208. DOI: 10.1007/s11801-012-1194-0
Article

Effects of the ZnO buffer layer and Al proportion on AZO film properties

Author information +
History +
PDF

Abstract

To evaluate the influence of the ZnO buffer layer and Al proportion on the properties of ZnO: Al (AZO)/ZnO bi-layer films, a series of AZO/ZnO films are deposited on the quartz substrates by electron beam evaporation. The X-ray diffraction measurement shows that the crystal quality of the films is improved with the increase of the film thickness. The electrical properties of the films are investigated. The carrier concentration and Hall mobility both increase with the increase of buffer layer thickness. However, the resistivity reaches the lowest at about 50 nm-thick buffer layer. The lowest resistivity and the maximum Hall mobility are both obtained at 1 wt% Al concentration. But the optical transmittance of all the films is greater than 80% regardless of the buffer layer thickness with Al concentration lower than 5 wt% in the visible region.

Keywords

Carrier Concentration / Buffer Layer / Deposition Time / Optical Transmittance / Hall Mobility

Cite this article

Download citation ▾
Cheng-hua Sui, Bin Liu, Tian-ning Xu, Bo Yan, Gao-yao Wei. Effects of the ZnO buffer layer and Al proportion on AZO film properties. Optoelectronics Letters, 2012, 8(3): 205-208 DOI:10.1007/s11801-012-1194-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ZhaoS. Q., ZhouY. L., LiuY. Z., ZhaoK., WangS. F., XiangW. F., LiuZ., HanP., ZhangZ., ChenZ. H.. Appl. Surf. Sci., 2006, 253: 726

[2]

YangZ., LookD. C., LiuJ. L.. Appl. Phys. Lett., 2009, 94: 072101

[3]

JungM. N., KooJ. E., OhS. J., LeeB.W., LeeW. J., HaS. H., ChoY. R., ChangJ. H.. Appl. Phys. Lett., 2009, 94: 041906

[4]

LiuH. F., WangZ. H.. J. Optoelectron. Laser, 2011, 22: 400

[5]

LiL. N., ChenX. L., LiuC., SunJ., GengX. H., ZhaoY.. J. Optoelectron. Laser, 2010, 21: 559

[6]

LuoL. J., TaoW., HuX. Y., XiaoT., HengB. J., HuangW., WangH., HanH. W., JiangQ. K., WangJ. B., TangY. W.. J. Power Sources, 2011, 196: 10518

[7]

ManouniA. E., ManjónF. J., MollarM., MaríB., GómezR., LópezM. C., Ramos-BarradoJ. R.. Superlattices. Microstruct, 2006, 39: 85

[8]

SuarezH. M., MaldonadoA., OlveraM. D. L., ReyesA., PerezR. C., DelgadoG. T., AsomozaR.. Appl. Surf. Sci., 2002, 193: 52

[9]

SuzukiA., MatsushitaT., WadaN., SakamotoY., OkudaM.. J. Appl. Phys., 1996, 35: L56

[10]

ChenM., PeiZ. L., SunC., WenS.. J. Vac. Sci. Technol., 2001, 19: 963

[11]

YangW. F., WuZ. Y., LiuZ. G., PangA. S., TuY. L., FengZ. C.. Thin Solid Films, 2010, 519: 31

[12]

LeeD. J., KimH. M., KwonJ. Y., ChoiH., KimS. H., KimK. B.. Adv. Funct. Mater., 2011, 21: 448

[13]

BangK. H., HwangD. K., MyoungJ. M.. Appl. Surf. Sci., 2003, 207: 359

[14]

ShinS. W., SimK. U., PawarS. M., MoholkarA. V., JungI. O., YunJ. H., MoonJ. H., KimJ. H., LeeJ. Y.. J. Cryst. Growth, 2010, 312: 1551

[15]

ZhangZ. Y., BaoC. G., MaS. Q., HouS. Z.. Appl. Surf. Sci., 2011, 257: 7893

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/