Magnetic field and temperature dependence of the groundstate energy of weak-coupling magnetopolaron in quantum rods with hydrogenic impurity

Xin Xiao , Wuyunqimuge , Chao Han , Eerdunchaolu

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (3) : 237 -240.

PDF
Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (3) : 237 -240. DOI: 10.1007/s11801-012-1163-7
Article

Magnetic field and temperature dependence of the groundstate energy of weak-coupling magnetopolaron in quantum rods with hydrogenic impurity

Author information +
History +
PDF

Abstract

The dependence of the ground-state properties of weak-coupling bound magnetopolarons in quantum rods (QRs) with hydrogenic impurity on magnetic field and temperature is studied by means of the Lee-Low-Pines (LLP) transformation method and Huybrechts linear combination operator method. The expression for the ground-state energy of the magnetopolaron is derived. Results of the numerical calculations show that the ground-state energy of weak-coupling bound magnetopolarons in QRs with hydrogenic impurity increases with increasing the cyclotron frequency of the magnetic field, the confinement strength of QRs and the temperature, but decreases with increasing the electron-phonon coupling strength and the dielectric constant ratio. The stability of the ground state of magnetopolarons is closely related to the aspect ratio e′ of the QR. The ground state of magnetopolarons is the most stable at e′ =1. The stability of the ground state of magnetopolarons can remarkably decrease when the value of the aspect ratio increases or decreases from 1.

Keywords

Cyclotron Frequency / Quantum Size Effect / Longitudinal Optical / Hydrogenic Impurity / Groundstate Energy

Cite this article

Download citation ▾
Xin Xiao, Wuyunqimuge, Chao Han, Eerdunchaolu. Magnetic field and temperature dependence of the groundstate energy of weak-coupling magnetopolaron in quantum rods with hydrogenic impurity. Optoelectronics Letters, 2012, 8(3): 237-240 DOI:10.1007/s11801-012-1163-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

XuJ.-p., ShiS.-b., ZhangX.-s., LiL.. Journal of Optoelectronics · Laser, 2010, 21: 1593

[2]

ZhangX.-S., LiL., HuangQ.-s., ZhangG.-f., XuJ.-p., XuanR.-w., WeiF.. Journal of Optoelectronics · Laser, 2011, 22: 1

[3]

ZhangX. W., XiaJ. B.. Chin. J. Semiconductors, 2006, 27: 2094

[4]

HuJ., WangL.-w., LiL.-s., YangW., Paul AlivisatosA.. J. Phys. Chem. B, 2002, 106: 2447

[5]

ZhangX. W., ZhuY. H., XiaJ. B.. Physica E, 2006, 33: 376

[6]

ClimenteJ. I., RoyoM., MovillaJ. L., PlanellesJ.. Phys. Rev. B, 2009, 79: 161301

[7]

FaiC. L., TeboulV., MonteilA., MaabouS., NsangouI.. Condensed Matter Physics, 2005, 8: 639

[8]

ComasF., StudartN., MarquesG. E.. Solid State Commun., 2004, 130: 477

[9]

XiaoJ. L., ZhaoC. L.. Superlattices Microstruct., 2011, 49: 9

[10]

XiaoJ. L., DingZ. H.. J. Low Temp. Phys., 2011, 163: 302

[11]

HuybrechtsJ.. J. Phys. C: Solid State Phys., 1976, 9: L211

[12]

LeeT. D., LowF. M., PinesD.. Phys. Rev., 1953, 90: 297

[13]

BrummellM. A., NicholasR. J., HopkinsM. A., HarrisJ. J., FoxonC. T.. Phys. Rev. Lett., 1987, 58: 77

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/