Attenuation of terahertz transmission through rain

Yi Luo , Wan-xia Huang , Zi-yi Luo

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (4) : 310 -313.

PDF
Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (4) : 310 -313. DOI: 10.1007/s11801-012-1162-8
Article

Attenuation of terahertz transmission through rain

Author information +
History +
PDF

Abstract

Based on the Marshall-Palmer, Weibull raindrop size distribution and Mie electromagnetic scattering model, the relationships of attenuation coefficient of terahertz (THz) atmospheric window waves with precipitation rate and temperature are studied. Furthermore, combined with the loss of electromagnetic wave transmission in free space, the attenuation of THz communication and the transmission of current mobile communication signals through rain are compared and analyzed. The results show that the attenuation coefficient of THz transmission is increased with increasing precipitation rate, the difference of attenuation coefficient at different THz window waves is small, and the maximum difference is about 3 dB. The rain attenuation of THz wave is first decreased and then increased with increasing temperature, but the temperature has little effect on it. The attenuation of THz wave through rain is much larger than that of mobile communication signal.

Keywords

Attenuation Coefficient / Weibull Distribution / Rainfall Intensity / Complex Refractive Index / Rain Attenuation

Cite this article

Download citation ▾
Yi Luo, Wan-xia Huang, Zi-yi Luo. Attenuation of terahertz transmission through rain. Optoelectronics Letters, 2012, 8(4): 310-313 DOI:10.1007/s11801-012-1162-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

YaoJ., ChiN., YangP., CuiH., WangJ., LiJ., XuD., DingX.. Chinese J. Lasers, 2009, 36: 2213

[2]

Hans, LiebeJ.. Int. J. Infrared Millimeter Waves, 1989, 10: 631

[3]

PardoJ. R., CernicharoJ., SerabynE.. IEEE Trans. Antennas Propagat., 2001, 49: 1683

[4]

BaronP., MendrokJ., KasaiY., OchiaiS., SetaT., SagiK., SuzukiK., SagawaH.. Journal of the National Institute of Information and Communications Technology, 2008, 55: 109

[5]

YaoJ.-q., WangJ.-l., ZhongK., WangR., XuD., DingX., ZhangF., WangP.. Journal of Optoelectronics · Laser, 2010, 21: 1582

[6]

Q.-n., JinW.-h., GeB.-z., ZhangY.-m.. Journal of Optoelectronics · Laser, 2010, 21: 1677

[7]

WeiH., LiuQ., SongZ., HuM., HanS.. J. Infrared Millim. Wave, 1997, 16: 418

[8]

XuX., WangP., YanY.-l., WangY.. Communications Technology, 2009, 42: 31

[9]

MaD., JinH., GuoX.. Ship Electronic Engineering, 2010, 30: 101

[10]

VasseurH., GibbinsC.. J. Appl. Opt., 1996, 35: 7144

[11]

GuoJ., ZhangH., WangX.. Acta Optica Sinica, 2011, 31: 41

[12]

IshiiS., SayamaS., MizutaniK.. Wireless Engineering and Technology, 2010, 1: 92

[13]

LiuX., GaoT., QinJ., LiuL.. Acta Physica Sinica, 2010, 59: 2156

[14]

Lambert Johann Heinrich, Histoire de l’Académie (Berlin), XVII: 265.

[15]

LiebeH. J., HuffordG. A., ManabeT.. International Journal of Infrared and Millimeter Waves, 1991, 12: 659

[16]

MarshallJ. S., PalmerW. M.. J. Meteoro., 1948, 5: 165

[17]

JossJ., GoriE. G.. S. J. Appl. Meteor., 1978, 17: 1054

[18]

M. Sekine and G. Lind, Rain Attenuation of Centimeter, Millimeter and Submillimeter Radio Waves, 12th European Microwave Conference, 584 (1982).

[19]

MaitraA.. Radio Science, 1999, 34: 657

[20]

Willis PaulT.. J. Atmos. Sci., 1984, 41: 1648

[21]

KonwarM., SarmaD. K., DasJ., SharmaS.. Indian J. Radio & Space Phys., 2006, 35: 360

[22]

ZhaoT.-f., HeH., KeX.-z.. Journal of Optoelectronics · Laser, 2011, 22: 1797

[23]

HuH., WangH.-x., LiuM., XuJ.-w., SunX.-m.. Journal of Optoelectronics · Laser, 2011, 22: 858

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/