Design of GaAs/AlxGa1−xAs asymmetric quantum wells for THz-wave by difference frequency generation

Xiao-long Cao, Jian-quan Yao, Neng-nian Zhu, De-gang Xu

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (3) : 229-232.

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (3) : 229-232. DOI: 10.1007/s11801-012-1156-6
Article

Design of GaAs/AlxGa1−xAs asymmetric quantum wells for THz-wave by difference frequency generation

Author information +
History +

Abstract

The energy levels, wave functions and the second-order nonlinear susceptibilities are calculated in GaAs/Al0.2Ga0.8As/Al0.5Ga0.5As asymmetric quantum well (AQW) by using an asymmetric model based on the parabolic and non-parabolic band. The influence of non-parabolicity can not be neglected when analyzing the phenomena in narrow quantum wells and in higher lying subband edges in wider wells. The numerical results show that under double resonance (DR) conditions, the secondorder difference frequency generation (DFG) and optical rectification (OR) generation susceptibilities in the AQW reach 2.5019 μm/V and 13.208 μm/V, respectively, which are much larger than those of the bulk GaAs. Besides, we calculate the absorption coefficient of AQW and find out the two pump wavelengths correspond to the maximum absorption, so appropriate pump beams must be selected to generate terahertz (THz) radiation by DFG.

Keywords

GaAs / Pump Beam / Quantum Cascade Laser / Pump Wavelength / Optical Rectification

Cite this article

Download citation ▾
Xiao-long Cao, Jian-quan Yao, Neng-nian Zhu, De-gang Xu. Design of GaAs/AlxGa1−xAs asymmetric quantum wells for THz-wave by difference frequency generation. Optoelectronics Letters, 2012, 8(3): 229‒232 https://doi.org/10.1007/s11801-012-1156-6

References

[1]
YangJ.-S., SodabanluH., SugiyamaM., NakanoY., ShimogakiY.. Appl. Phys. Lett., 2009, 95: 162111
CrossRef Google scholar
[2]
ZhuH.-Y., ZhangT.-Y., ZhaoW.. J. Appl. Phys., 2009, 105: 043518
CrossRef Google scholar
[3]
KandaswamyP. K., MachhadaniH., BougerolC., SakrS., TchernychevaM., JulienF. H., MonroyE.. Appl. Phys. Lett., 2009, 95: 141911
CrossRef Google scholar
[4]
TonouchiM.. Nat. Photonics, 2007, 197: 105
[5]
Jian-QuanY., Jing-LiW., KaiZ., RanW., De-GangX., XinD., FanZ., PengW.. Journal of Optoelectronics · Laser, 2010, 21: 1582
[6]
Peng-ChengZ., ChangQ., Xian-YangJ., Xin-ZhiS., Gao-FengW.. Journal of Optoelectronics · Laser, 2011, 22: 1313
[7]
WilliamsB. S.. Nat. Photonics, 2007, 1: 517
CrossRef Google scholar
[8]
BelkinM. A., FanJ. A., HormozS., CapassoF., KhannaS. P., LachabM., DaviesA. G., LinfieldE. H.. Opt. Express, 2008, 16: 3242
CrossRef Google scholar
[9]
LuY., WangX., MiaoL., ZuoD., ChengZ.. Appl. Phys. B, 2011, 103: 387
CrossRef Google scholar
[10]
VodopyanovK. L., FejerM. M., YuX., HarrisJ. S., LeeY.-S., HurlbutW. C., KozlovV. G., BlissD., LynchC.. Appl. Phys. Lett., 2006, 89: 141119
CrossRef Google scholar
[11]
SirtoriC., CapassoF., FaistJ., PfeifferL. N., WestK. W.. Appl. Phys. Lett., 1994, 65: 445
CrossRef Google scholar
[12]
Dong-FengL., Yi-XinL., Cai-HongM.. Semicond. Sci. Technol., 2009, 24: 045019
CrossRef Google scholar
[13]
VincentB.. Semicond. Sci. Technol., 1994, 9: 1493
CrossRef Google scholar
[14]
HiroshimaT., LangR.. Appl. Phys. Lett., 1986, 49: 456
CrossRef Google scholar
[15]
DupontE., WasilewskiZ. R., LiuH. C.. IEEE Journal of Quantum Electronics, 2006, 42: 1157
CrossRef Google scholar
[16]
WurituN., JianG.. Journal of Optoelectronics · Laser, 2010, 21: 1102

This work has been supported by the National Basic Research Program of China (No.2007CB310403), the National Natural Science Foundation of China (Nos.60801017 and 61172010), and the Science and Technology Committee of Tianjin (No.11JCYBJC01100).

Accesses

Citations

Detail

Sections
Recommended

/