Design of GaAs/AlxGa1−xAs asymmetric quantum wells for THz-wave by difference frequency generation

Xiao-long Cao , Jian-quan Yao , Neng-nian Zhu , De-gang Xu

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (3) : 229 -232.

PDF
Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (3) : 229 -232. DOI: 10.1007/s11801-012-1156-6
Article

Design of GaAs/AlxGa1−xAs asymmetric quantum wells for THz-wave by difference frequency generation

Author information +
History +
PDF

Abstract

The energy levels, wave functions and the second-order nonlinear susceptibilities are calculated in GaAs/Al0.2Ga0.8As/Al0.5Ga0.5As asymmetric quantum well (AQW) by using an asymmetric model based on the parabolic and non-parabolic band. The influence of non-parabolicity can not be neglected when analyzing the phenomena in narrow quantum wells and in higher lying subband edges in wider wells. The numerical results show that under double resonance (DR) conditions, the secondorder difference frequency generation (DFG) and optical rectification (OR) generation susceptibilities in the AQW reach 2.5019 μm/V and 13.208 μm/V, respectively, which are much larger than those of the bulk GaAs. Besides, we calculate the absorption coefficient of AQW and find out the two pump wavelengths correspond to the maximum absorption, so appropriate pump beams must be selected to generate terahertz (THz) radiation by DFG.

Keywords

GaAs / Pump Beam / Quantum Cascade Laser / Pump Wavelength / Optical Rectification

Cite this article

Download citation ▾
Xiao-long Cao, Jian-quan Yao, Neng-nian Zhu, De-gang Xu. Design of GaAs/AlxGa1−xAs asymmetric quantum wells for THz-wave by difference frequency generation. Optoelectronics Letters, 2012, 8(3): 229-232 DOI:10.1007/s11801-012-1156-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

YangJ.-S., SodabanluH., SugiyamaM., NakanoY., ShimogakiY.. Appl. Phys. Lett., 2009, 95: 162111

[2]

ZhuH.-Y., ZhangT.-Y., ZhaoW.. J. Appl. Phys., 2009, 105: 043518

[3]

KandaswamyP. K., MachhadaniH., BougerolC., SakrS., TchernychevaM., JulienF. H., MonroyE.. Appl. Phys. Lett., 2009, 95: 141911

[4]

TonouchiM.. Nat. Photonics, 2007, 197: 105

[5]

Jian-QuanY., Jing-LiW., KaiZ., RanW., De-GangX., XinD., FanZ., PengW.. Journal of Optoelectronics · Laser, 2010, 21: 1582

[6]

Peng-ChengZ., ChangQ., Xian-YangJ., Xin-ZhiS., Gao-FengW.. Journal of Optoelectronics · Laser, 2011, 22: 1313

[7]

WilliamsB. S.. Nat. Photonics, 2007, 1: 517

[8]

BelkinM. A., FanJ. A., HormozS., CapassoF., KhannaS. P., LachabM., DaviesA. G., LinfieldE. H.. Opt. Express, 2008, 16: 3242

[9]

LuY., WangX., MiaoL., ZuoD., ChengZ.. Appl. Phys. B, 2011, 103: 387

[10]

VodopyanovK. L., FejerM. M., YuX., HarrisJ. S., LeeY.-S., HurlbutW. C., KozlovV. G., BlissD., LynchC.. Appl. Phys. Lett., 2006, 89: 141119

[11]

SirtoriC., CapassoF., FaistJ., PfeifferL. N., WestK. W.. Appl. Phys. Lett., 1994, 65: 445

[12]

Dong-FengL., Yi-XinL., Cai-HongM.. Semicond. Sci. Technol., 2009, 24: 045019

[13]

VincentB.. Semicond. Sci. Technol., 1994, 9: 1493

[14]

HiroshimaT., LangR.. Appl. Phys. Lett., 1986, 49: 456

[15]

DupontE., WasilewskiZ. R., LiuH. C.. IEEE Journal of Quantum Electronics, 2006, 42: 1157

[16]

WurituN., JianG.. Journal of Optoelectronics · Laser, 2010, 21: 1102

AI Summary AI Mindmap
PDF

420

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/