Reflective terahertz tunable polarization controller

Chao Niu, Sheng-jiang Chang

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (4) : 264-268.

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (4) : 264-268. DOI: 10.1007/s11801-012-1155-7
Article

Reflective terahertz tunable polarization controller

Author information +
History +

Abstract

This paper proposes an optical device which can continuously change the polarization state of terahertz (THz) waves. The device consists of metal gate, anti-reflection coatings, liquid crystal and mirror. By changing the refractive index of liquid crystal in the interface between the metal gate and the mirror, the phase difference between two beams with orthogonal polarization is varied and a continuous phase shift is achieved. The phase shift of the device is calculated by using the finite difference time domain (FDTD) method, and the transmittance and reflectance are calculated by using the rigorous coupled wave analysis (RCWA) method. The results reveal that the structure can realize continuously tunable phase shift for THz wave at 1 THz.

Keywords

Liquid Crystal / Extinction Ratio / Finite Difference Time Domain / Liquid Crystal Molecule / Metal Gate

Cite this article

Download citation ▾
Chao Niu, Sheng-jiang Chang. Reflective terahertz tunable polarization controller. Optoelectronics Letters, 2012, 8(4): 264‒268 https://doi.org/10.1007/s11801-012-1155-7

References

[1]
NagelM., Haring BolivarP., BrucherseiferM., KurzH., BosserhoffA., ButtnerR.. Appl. Phys. Lett., 2002, 80: 154
CrossRef Google scholar
[2]
CharlesA., Schmuttenmaer. Chem. Rev., 2004, 104: 1759
CrossRef Google scholar
[3]
AwadM. M., ChevilleR. A.. Appl. Phys. Lett., 2005, 86: 221107-221102
CrossRef Google scholar
[4]
WoolardD. L., BrownE. R., PepperM., KempM.. Proceedings of the IEEE, 2005, 93: 1722
CrossRef Google scholar
[5]
CostleyA. E., HurseyK. H., NeillG. F., WaldJ. M.. J. Opt. Soc. Am., 1977, 67: 979
CrossRef Google scholar
[6]
GrischkowskyD., KeidingS., ExterM. v., FattingerC.. J. Opt. Soc. Am.B, 1990, 7: 2006
CrossRef Google scholar
[7]
MassonJ. B., GallotG.. Opt. Lett., 2006, 31: 265
CrossRef Google scholar
[8]
SaitoM., YasudaT.. J. Opt., 2010, 12: 015504
CrossRef Google scholar
[9]
HsiehC. F., PanR. P., TangT. T., ChenH. L., PanC. L.. Opt. Lett., 2006, 31: 1112
CrossRef Google scholar
[10]
WuB., ZhangH., ZhuL. D., GuoP., WangQ., GaoR. M., ChangS. J.. Acta Phys. Sin., 2009, 58: 1838
[11]
ChenC. Y., HsiehC. F., LinY. F., PanR. P., PanC. L.. Opt. Exp., 2004, 12: 2625
CrossRef Google scholar
[12]
ZhaoH.-J., PengY.-J., TanJ., LiaoC.-R., LiP., RenX.-X.. Chinese Phys. B, 2009, 18: 5326
CrossRef Google scholar
[13]
KutaJ. J., van DrielH. M... J. Opt. Soc. A, 1995, 12: 1118
CrossRef Google scholar
[14]
DaiJ., ZhangJ., ZhangW., GrischkowskyD.. J. Opt. Soc. Am B, 2004, 21: 1379
CrossRef Google scholar
[15]
WinerK., CardonaM.. Phys. Rev. B, 1987, 35: 8189
CrossRef Google scholar
[16]
LoewensteinE. V., SmithD. R., MorganR. L.. Appl. Opt., 1973, 12: 398
CrossRef Google scholar
[17]
WangX. J.. Liquid Crystal Optics and Liquid Crystal Display, 2006, Beijing, Science Press: 249
[18]
LiuH.. Acta Phys. Sin., 2000, 49: 931
[19]
R.-b., XuK.-s., ZhangS.-y., GuJ.-h., LuZ.-h.. Acta Phys. Sin., 1999, 48: 2289
[20]
WangQ., HeS.-L.. Acta Phys. Sin, 2001, 50: 926
[21]
WuB., ZhangH., GuoP., WangQ., ChangS.. J. Opt. Soc. Am. B, 2010, 27: 505
CrossRef Google scholar
[22]
KahnF. J.. Appl. Phys. Lett., 1973, 22: 386
CrossRef Google scholar

This work has been supported by the National Key Basic Research Program of China (No.2007CB310403).

Accesses

Citations

Detail

Sections
Recommended

/