Design and fabrication of a novel high damage threshold HfO2/TiO2/SiO2 multilayer laser mirror

Zeng-you Meng, Sha-ling Huang, Zhe Liu, Cheng-hang Zeng, Yi-kun Bu

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (3) : 190-192.

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (3) : 190-192. DOI: 10.1007/s11801-012-1149-5
Article

Design and fabrication of a novel high damage threshold HfO2/TiO2/SiO2 multilayer laser mirror

Author information +
History +

Abstract

This paper describes a new method to design a laser mirror with high reflectivity, wide reflection bandwidth and high laserinduced damage threshold. The mirror is constructed by three materials of HfO2/TiO2/SiO2 based on electric field and temperature field distribution characteristics of all-dielectric laser high reflector. TiO2/SiO2 stacks act as the high reflector (HR) and broaden the reflection bandwidth, while HfO2/SiO2 stacks are used for increasing the laser resistance. The HfO2/TiO2/SiO2 laser mirror with 34 layers is fabricated by a novel remote plasma sputtering deposition. The damage threshold of zero damage probability for the new mirror is up to 39.6 J/cm2 (1064 nm, 12 ns). The possible laser damage mechanism of the mirror is discussed.

Keywords

Electric Field Intensity / Damage Threshold / Damage Morphology / Laser Damage / Remote Plasma

Cite this article

Download citation ▾
Zeng-you Meng, Sha-ling Huang, Zhe Liu, Cheng-hang Zeng, Yi-kun Bu. Design and fabrication of a novel high damage threshold HfO2/TiO2/SiO2 multilayer laser mirror. Optoelectronics Letters, 2012, 8(3): 190‒192 https://doi.org/10.1007/s11801-012-1149-5

References

[1]
LanL., FangY., LinX. D., ChenJ. G., LiD. Y., FengG. Y.. Opt. Laser Technol., 2005, 37: 211
CrossRef Google scholar
[2]
OaneM., ScarlatF., TsaoS.-L., MihailescuI. N.. Opt. Laser Technol., 2007, 39: 796
CrossRef Google scholar
[3]
FanZ. X., ZhaoQ., WuZ. L.. Temperature Field Design of Optical Thin Film Coatings, Laser-Induced Damage in Optical Materials, Colorado, Proc. SPIE, 1996, 2966: 362
[4]
GallaisL., KrolH., NatoliJ. Y., CommandrM., CathelinaudM., RousselL., LequimeM., AmraC.. Thin Solid Films, 2007, 515: 3830
CrossRef Google scholar
[5]
GallaisL., CapouladeJ., NatoliJ. Y., CommandrM., CathelinaudM., KocC., LequimeM.. Appl. Opt., 2008, 47: C107
CrossRef Google scholar
[6]
GrilliM. L., MenchiniF., PiegariA., AlderighiD., TociG., VanniniM.. Thin Solid Films, 2009, 517: 1731
CrossRef Google scholar
[7]
LiuX. F., LiD. W., ZhaoY. A., LiX., ShaoJ. D.. Applied Surface Science, 2010, 256: 3783
CrossRef Google scholar
[8]
QiR., WuF., HaoD., WangQ., HanP.. Jounal of Optoelectronics·Laser, 2011, 22: 884
[9]
BolingN. L., CrispM. D., DubéG.. Appl. Opt., 1973, 12: 650
CrossRef Google scholar
[10]
BettisJ. R., GuentherA. H., HouseR. A.II. Opt. Lett., 1979, 4: 256
CrossRef Google scholar
[11]
WakehamS. J., ThwaitesM. J., HoltonB. W., TsakonasC., CrantonW. M., KoutsogeorgisD. C., RansonR.. Thin Solid Films, 2009, 518: 1355
CrossRef Google scholar
[12]
ZhaoZ., LiuY.. Journal of Optoelectronics· Laser, 2011, 22: 722

This work has been supported by the National Natural Science Foundation of China (No.50802080) and the Natural Science Foundation of Fujian Province of China (No.2010J01349).

Accesses

Citations

Detail

Sections
Recommended

/