Design and fabrication of a novel high damage threshold HfO2/TiO2/SiO2 multilayer laser mirror

Zeng-you Meng , Sha-ling Huang , Zhe Liu , Cheng-hang Zeng , Yi-kun Bu

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (3) : 190 -192.

PDF
Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (3) : 190 -192. DOI: 10.1007/s11801-012-1149-5
Article

Design and fabrication of a novel high damage threshold HfO2/TiO2/SiO2 multilayer laser mirror

Author information +
History +
PDF

Abstract

This paper describes a new method to design a laser mirror with high reflectivity, wide reflection bandwidth and high laserinduced damage threshold. The mirror is constructed by three materials of HfO2/TiO2/SiO2 based on electric field and temperature field distribution characteristics of all-dielectric laser high reflector. TiO2/SiO2 stacks act as the high reflector (HR) and broaden the reflection bandwidth, while HfO2/SiO2 stacks are used for increasing the laser resistance. The HfO2/TiO2/SiO2 laser mirror with 34 layers is fabricated by a novel remote plasma sputtering deposition. The damage threshold of zero damage probability for the new mirror is up to 39.6 J/cm2 (1064 nm, 12 ns). The possible laser damage mechanism of the mirror is discussed.

Keywords

Electric Field Intensity / Damage Threshold / Damage Morphology / Laser Damage / Remote Plasma

Cite this article

Download citation ▾
Zeng-you Meng, Sha-ling Huang, Zhe Liu, Cheng-hang Zeng, Yi-kun Bu. Design and fabrication of a novel high damage threshold HfO2/TiO2/SiO2 multilayer laser mirror. Optoelectronics Letters, 2012, 8(3): 190-192 DOI:10.1007/s11801-012-1149-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LanL., FangY., LinX. D., ChenJ. G., LiD. Y., FengG. Y.. Opt. Laser Technol., 2005, 37: 211

[2]

OaneM., ScarlatF., TsaoS.-L., MihailescuI. N.. Opt. Laser Technol., 2007, 39: 796

[3]

FanZ. X., ZhaoQ., WuZ. L.. Temperature Field Design of Optical Thin Film Coatings, Laser-Induced Damage in Optical Materials, Colorado, Proc. SPIE, 1996, 2966: 362

[4]

GallaisL., KrolH., NatoliJ. Y., CommandrM., CathelinaudM., RousselL., LequimeM., AmraC.. Thin Solid Films, 2007, 515: 3830

[5]

GallaisL., CapouladeJ., NatoliJ. Y., CommandrM., CathelinaudM., KocC., LequimeM.. Appl. Opt., 2008, 47: C107

[6]

GrilliM. L., MenchiniF., PiegariA., AlderighiD., TociG., VanniniM.. Thin Solid Films, 2009, 517: 1731

[7]

LiuX. F., LiD. W., ZhaoY. A., LiX., ShaoJ. D.. Applied Surface Science, 2010, 256: 3783

[8]

QiR., WuF., HaoD., WangQ., HanP.. Jounal of Optoelectronics·Laser, 2011, 22: 884

[9]

BolingN. L., CrispM. D., DubéG.. Appl. Opt., 1973, 12: 650

[10]

BettisJ. R., GuentherA. H., HouseR. A.II. Opt. Lett., 1979, 4: 256

[11]

WakehamS. J., ThwaitesM. J., HoltonB. W., TsakonasC., CrantonW. M., KoutsogeorgisD. C., RansonR.. Thin Solid Films, 2009, 518: 1355

[12]

ZhaoZ., LiuY.. Journal of Optoelectronics· Laser, 2011, 22: 722

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/