Refractive index and temperature dependent displacements of resonant peaks of long period grating inscribed in hydrogen loaded SMF-28 fiber

T. M. Libish, M. C. Bobby, J. Linesh, S. Mathew, C. Pradeep, V. P. N. Nampoori, P. Radhakrishnan

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (2) : 101-104.

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (2) : 101-104. DOI: 10.1007/s11801-012-1137-9
Article

Refractive index and temperature dependent displacements of resonant peaks of long period grating inscribed in hydrogen loaded SMF-28 fiber

Author information +
History +

Abstract

In this paper, the effects of refractive index (RI) of surrounding medium and ambient temperature on the transmission characteristics of a long period grating (LPG) are experimentally analyzed. The spectral behavior of LPG is investigated when the ambient index is higher or lower than that of the cladding material. The results show that the refractive index sensitivity of lower order attenuation bands is very low compared with that of the highest order attenuation band. But in the case of temperature, the lower order attenuation bands of the LPG can also exhibit good sensitivity like the higher-order bands.

Keywords

Transmission Spectrum / Wavelength Shift / Resonance Wavelength / Long Period Grating / Attenuation Band

Cite this article

Download citation ▾
T. M. Libish, M. C. Bobby, J. Linesh, S. Mathew, C. Pradeep, V. P. N. Nampoori, P. Radhakrishnan. Refractive index and temperature dependent displacements of resonant peaks of long period grating inscribed in hydrogen loaded SMF-28 fiber. Optoelectronics Letters, 2012, 8(2): 101‒104 https://doi.org/10.1007/s11801-012-1137-9

References

[1]
Vasil’evS. A., MedvedkovO. I., KorolevI. G., BozhkovA. S., KurkovA. S., DianovE. M.. Quantum Electronics, 2005, 35: 1085
CrossRef Google scholar
[2]
VengsarkarA. M., LemaireP. J., JudkinsJ. B., BhatiaV., ErdoganT., SipeJ. E.. J. Lightwave Technol., 1996, 14: 58
CrossRef Google scholar
[3]
DasM., ThyagarajanK.. Opt. Commun., 2001, 190: 159
CrossRef Google scholar
[4]
EggletonB. J., SlusherR. E., JudkinsJ. B., StarkJ. B., VengsarkarA. M.. Opt. Lett., 1997, 22: 883
CrossRef Google scholar
[5]
ZhuY., LuC., LacquetB. M., SwartP. L., SpammerS. J.. Opt. Commun., 2002, 208: 337
CrossRef Google scholar
[6]
VengsarkarA. M., PedrazzaniJ. R., JudkinsJ. B., LemaireP. J., BerganoN. S., DavidsonC. B.. Opt. Lett., 1996, 21: 336
CrossRef Google scholar
[7]
JamesS. W., TatamR. P.. Meas. Sci. Technol., 2003, 14: R49
CrossRef Google scholar
[8]
LeeB. H., LiuY., LeeS. B., ChoiS. S., JangJ. N.. Opt. Lett., 1997, 22: 1769
CrossRef Google scholar
[9]
ChongJ. H., ShumP., HaryonoH., YohanaA., RaoM. K., LuC., ZhuY.. Opt. Commun., 2004, 229: 65
CrossRef Google scholar
[10]
FlahertyF. J. O., GhassemlooyZ., MangatP. S., DowkerK. P.. Microwave and Optical Technol. Lett., 2004, 42: 402
CrossRef Google scholar
[11]
KhaliqS., JamesS. W., TatamR. P.. Meas. Sci. Technol., 2002, 13: 792
CrossRef Google scholar
[12]
Ju-anR., Qing-keZ., Zi-xiongQ., Wei-yuanL., PingH.. Optoelectronics Lett., 2008, 4: 0114
CrossRef Google scholar
[13]
BhatiaV.. Opt. Exp., 1999, 4: 457
CrossRef Google scholar
[14]
PatrickH. J., KerseyA. D., BucholtzF.. J. Lightwave Technol., 1998, 16: 1606
CrossRef Google scholar
[15]
ShuX. W., ZhangL., BennionI.. J. Lightwave Technol., 2002, 20: 255
CrossRef Google scholar
[16]
DuhemO., Fraòois HenninotJ., WarenghemM., DouayM.. Appl. Opt., 1998, 37: 7223
CrossRef Google scholar
[17]
TsudaH., UrabeK.. Sensors, 2009, 9: 4559
CrossRef Google scholar
[18]
KoyamadaY.. IEEE Photon. Technol. Lett., 2001, 13: 308
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/