Refractive index and temperature dependent displacements of resonant peaks of long period grating inscribed in hydrogen loaded SMF-28 fiber

T. M. Libish , M. C. Bobby , J. Linesh , S. Mathew , C. Pradeep , V. P. N. Nampoori , P. Radhakrishnan

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (2) : 101 -104.

PDF
Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (2) : 101 -104. DOI: 10.1007/s11801-012-1137-9
Article

Refractive index and temperature dependent displacements of resonant peaks of long period grating inscribed in hydrogen loaded SMF-28 fiber

Author information +
History +
PDF

Abstract

In this paper, the effects of refractive index (RI) of surrounding medium and ambient temperature on the transmission characteristics of a long period grating (LPG) are experimentally analyzed. The spectral behavior of LPG is investigated when the ambient index is higher or lower than that of the cladding material. The results show that the refractive index sensitivity of lower order attenuation bands is very low compared with that of the highest order attenuation band. But in the case of temperature, the lower order attenuation bands of the LPG can also exhibit good sensitivity like the higher-order bands.

Keywords

Transmission Spectrum / Wavelength Shift / Resonance Wavelength / Long Period Grating / Attenuation Band

Cite this article

Download citation ▾
T. M. Libish, M. C. Bobby, J. Linesh, S. Mathew, C. Pradeep, V. P. N. Nampoori, P. Radhakrishnan. Refractive index and temperature dependent displacements of resonant peaks of long period grating inscribed in hydrogen loaded SMF-28 fiber. Optoelectronics Letters, 2012, 8(2): 101-104 DOI:10.1007/s11801-012-1137-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Vasil’evS. A., MedvedkovO. I., KorolevI. G., BozhkovA. S., KurkovA. S., DianovE. M.. Quantum Electronics, 2005, 35: 1085

[2]

VengsarkarA. M., LemaireP. J., JudkinsJ. B., BhatiaV., ErdoganT., SipeJ. E.. J. Lightwave Technol., 1996, 14: 58

[3]

DasM., ThyagarajanK.. Opt. Commun., 2001, 190: 159

[4]

EggletonB. J., SlusherR. E., JudkinsJ. B., StarkJ. B., VengsarkarA. M.. Opt. Lett., 1997, 22: 883

[5]

ZhuY., LuC., LacquetB. M., SwartP. L., SpammerS. J.. Opt. Commun., 2002, 208: 337

[6]

VengsarkarA. M., PedrazzaniJ. R., JudkinsJ. B., LemaireP. J., BerganoN. S., DavidsonC. B.. Opt. Lett., 1996, 21: 336

[7]

JamesS. W., TatamR. P.. Meas. Sci. Technol., 2003, 14: R49

[8]

LeeB. H., LiuY., LeeS. B., ChoiS. S., JangJ. N.. Opt. Lett., 1997, 22: 1769

[9]

ChongJ. H., ShumP., HaryonoH., YohanaA., RaoM. K., LuC., ZhuY.. Opt. Commun., 2004, 229: 65

[10]

FlahertyF. J. O., GhassemlooyZ., MangatP. S., DowkerK. P.. Microwave and Optical Technol. Lett., 2004, 42: 402

[11]

KhaliqS., JamesS. W., TatamR. P.. Meas. Sci. Technol., 2002, 13: 792

[12]

Ju-anR., Qing-keZ., Zi-xiongQ., Wei-yuanL., PingH.. Optoelectronics Lett., 2008, 4: 0114

[13]

BhatiaV.. Opt. Exp., 1999, 4: 457

[14]

PatrickH. J., KerseyA. D., BucholtzF.. J. Lightwave Technol., 1998, 16: 1606

[15]

ShuX. W., ZhangL., BennionI.. J. Lightwave Technol., 2002, 20: 255

[16]

DuhemO., Fraòois HenninotJ., WarenghemM., DouayM.. Appl. Opt., 1998, 37: 7223

[17]

TsudaH., UrabeK.. Sensors, 2009, 9: 4559

[18]

KoyamadaY.. IEEE Photon. Technol. Lett., 2001, 13: 308

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/