Influence of phase shift drift and splitting ratio on 80 GHz optical mm-wave generation

Zi-hang Zhu , Shang-hong Zhao , Zhou-shi Yao , Qing-gui Tan , Yong-jun Li , Yi Dong , Wei-hu Zhao

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (4) : 301 -305.

PDF
Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (4) : 301 -305. DOI: 10.1007/s11801-012-1133-0
Article

Influence of phase shift drift and splitting ratio on 80 GHz optical mm-wave generation

Author information +
History +
PDF

Abstract

For the scheme of 80 GHz optical millimeter-wave (mm-wave) generation using two cascaded Mach-Zehnder modulators (MZMs), an exact analytical solution for the optical mm-wave affected by phase shift drift and splitting ratio is derived with the method of expanding Bessel series. The results show that for the carrier and the fourth-order sideband, the influence caused by phase shift drift is dominant, while the first-order, the second-order and the third-order sidebands are influenced by both phase shift drift and splitting ratio. It follows that the undesired sideband suppression ratio is at least 35.9 dB when the splitting ratio deviation is 0.001, and the phase shift drift is 1°. The performance of the system is perfect if the accuracy is achieved.

Keywords

Splitting Ratio / Exact Analytical Solution / Optic Express / Microwave Technology / IEEE Photonic Technology Letter

Cite this article

Download citation ▾
Zi-hang Zhu, Shang-hong Zhao, Zhou-shi Yao, Qing-gui Tan, Yong-jun Li, Yi Dong, Wei-hu Zhao. Influence of phase shift drift and splitting ratio on 80 GHz optical mm-wave generation. Optoelectronics Letters, 2012, 8(4): 301-305 DOI:10.1007/s11801-012-1133-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

XieJ.-L., HuangX.-G., TaoJ.. Optics Communications, 2010, 283: 874

[2]

ZhangM., YuJ.-g., CaoZ.-z., ChenL.. Journal of Optoelectronics Laser, 2010, 21: 547

[3]

MohamedmM., ZhangX., HraimelB., WuK.. Optics Express, 2008, 16: 10786

[4]

ZhaoY., ZhengX., WenH., ZhangH.. Optics Letters, 2009, 34: 3250

[5]

LiZ.-l., CaoZ.-z., DongZ., ChenL.. Journal of Optoelectronics Laser, 2010, 21: 383

[6]

HeJ., ChenL., DongZ., WenS., YuJ.. Optical Fiber Technology, 2009, 15: 290

[7]

YangX.-s., HuangX.-g., XieJ.-l., ZhuJ.-h.. Journal of Optoelectronics Laser, 2011, 22: 706

[8]

ZhuJ. H., HuangX. G., XieJ. L.. Optics Communications, 2011, 284: 729

[9]

ChenY., WenA., ShangL.. Fiber and Integrated Optics, 2011, 30: 231

[10]

LiW., YaoJ.. IEEE Photonics Technology Letters, 2010, 22: 24

[11]

ShangL., WenA., LiB., WangaT., ChenaY., LiM.. Optics Communications, 2011, 284: 5618

[12]

MaJ., XinX., YuJ., YuC., WangK., HuangH., RaoL.. Journal of Optical Networking, 2008, 10: 837

[13]

LinC.-T., ShihP.-T., JiangW.-J., Jason. Optics Express, 2009, 17: 19749

[14]

ChenY., WenA., ShangL.. Optics Communications, 2010, 283: 4933

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/