Modulation instability in negative refractive materials with saturable nonlinearity

Xian-qiong Zhong

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (2) : 157 -160.

PDF
Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (2) : 157 -160. DOI: 10.1007/s11801-012-1128-x
Article

Modulation instability in negative refractive materials with saturable nonlinearity

Author information +
History +
PDF

Abstract

Starting directly from the nonlinear propagation equation including saturable nonlinearity, the first- and the second-order nonlinear dispersions, the dispersion relation, instable condition, gain spectra, and the dimensionless cut-off frequency and gain spectra of modulation instability (MI) in the negative refractive material are deduced by adopting the linear stability analysis and Drude electromagnetic model. And the variations of the dimensionless gain spectra with the normalized angular frequency and normalized incident power are calculated and discussed for different sign relations between the linear dispersion and the third-order nonlinear coefficients. The results show that in the negative refractive index region, MI can occur irrespective of the sign relation between the linear dispersion and the third-order nonlinear coefficients. And depending on different dimensionless angular frequencies and different sign relations, the variations of the dimensionless gain spectra with incident power take on several different forms. Namely, the peak gain and the cut-off frequency of MI may increase then decrease with the increase of the incident power, or decrease monotonously. Moreover, MI may even have a threshold incident power for some cases.

Keywords

Modulation Instability / Linear Stability Analysis / Incident Power / Linear Dispersion / Gain Spectrum

Cite this article

Download citation ▾
Xian-qiong Zhong. Modulation instability in negative refractive materials with saturable nonlinearity. Optoelectronics Letters, 2012, 8(2): 157-160 DOI:10.1007/s11801-012-1128-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AgrawalG. P., BaldeckP. L., AlfanoR. R.. Phys. Rev. A, 1989, 39: 3406

[2]

Tchofo DindaP., PorsezianK. J.. Opt. Soc. Am. B, 2010, 27: 1143

[3]

ZhongX.-q., XiangA.-p., CaiQ., LuoL.. Chin. J. Laser, 2006, 33: 1200

[4]

ZhongX., XiangA.. Opt. Fiber Technol., 2007, 13: 271

[5]

NdzanaF.II, MohamadouA., KofanéT. C.. Opt. Commun., 2007, 275: 421

[6]

ShiP. M., YuS., LiuT., ShengJ., GuW.. Opt. Lett., 2009, 34: 1339

[7]

GongY. D., ShumP., TangD. Y., LuC., GuoX.. Optics Express, 2003, 11: 2480

[8]

ScaloraM., SyrchinM. S., AkozbekN., Poliakov EvgeniY., Aguanno GiuseppeD., MattiucciN., Bloemer MarkJ., Zheltikov AlekseiM.. Phys. Rev. Lett., 2005, 95: 013902-1

[9]

CuiW., ZhuY., LiH., LiuS.. Phys. Lett. A, 2009, 374: 380

[10]

TianZ., LiuS.-l., ZhengH.-j.. Journal of Optoelectronics·Laser, 2010, 21: 537

[11]

KourakisI., ShuklaP. K.. Phys. Rev. E, 2005, 72: 016626-1

[12]

WenS., WangY., SuW., XiangY., FuX., FanD.. Phys. Rev. E, 2006, 73: 036617-1

[13]

LiX.-l., ZhangL.-s., ZhangW., YangL.-j., LiX.-w.. Journal of Optoelectronics·Laser, 2010, 21: 149

[14]

ZhouW., SuW. H., ChengX., XiangY. J., DaiX. Y., WenS. C.. Opt. Commun., 2009, 282: 1440

[15]

MaluckovA., HadzievskiL., LazaridesN., TsironisG. P.. Phys. Rev. E, 2008, 77: 046607-1

[16]

XiangY., DaiX., WenS., FanD.. J. Opt. Soc. Am. B, 2011, 28: 908

[17]

PendryJ. B.. Phys. Rev. Lett., 2000, 85: 3966

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/