Modulation instability in negative refractive materials with saturable nonlinearity

Xian-qiong Zhong

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (2) : 157-160.

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (2) : 157-160. DOI: 10.1007/s11801-012-1128-x
Article

Modulation instability in negative refractive materials with saturable nonlinearity

Author information +
History +

Abstract

Starting directly from the nonlinear propagation equation including saturable nonlinearity, the first- and the second-order nonlinear dispersions, the dispersion relation, instable condition, gain spectra, and the dimensionless cut-off frequency and gain spectra of modulation instability (MI) in the negative refractive material are deduced by adopting the linear stability analysis and Drude electromagnetic model. And the variations of the dimensionless gain spectra with the normalized angular frequency and normalized incident power are calculated and discussed for different sign relations between the linear dispersion and the third-order nonlinear coefficients. The results show that in the negative refractive index region, MI can occur irrespective of the sign relation between the linear dispersion and the third-order nonlinear coefficients. And depending on different dimensionless angular frequencies and different sign relations, the variations of the dimensionless gain spectra with incident power take on several different forms. Namely, the peak gain and the cut-off frequency of MI may increase then decrease with the increase of the incident power, or decrease monotonously. Moreover, MI may even have a threshold incident power for some cases.

Keywords

Modulation Instability / Linear Stability Analysis / Incident Power / Linear Dispersion / Gain Spectrum

Cite this article

Download citation ▾
Xian-qiong Zhong. Modulation instability in negative refractive materials with saturable nonlinearity. Optoelectronics Letters, 2012, 8(2): 157‒160 https://doi.org/10.1007/s11801-012-1128-x

References

[1]
AgrawalG. P., BaldeckP. L., AlfanoR. R.. Phys. Rev. A, 1989, 39: 3406
CrossRef Google scholar
[2]
Tchofo DindaP., PorsezianK. J.. Opt. Soc. Am. B, 2010, 27: 1143
CrossRef Google scholar
[3]
ZhongX.-q., XiangA.-p., CaiQ., LuoL.. Chin. J. Laser, 2006, 33: 1200
[4]
ZhongX., XiangA.. Opt. Fiber Technol., 2007, 13: 271
CrossRef Google scholar
[5]
NdzanaF.II, MohamadouA., KofanéT. C.. Opt. Commun., 2007, 275: 421
CrossRef Google scholar
[6]
ShiP. M., YuS., LiuT., ShengJ., GuW.. Opt. Lett., 2009, 34: 1339
CrossRef Google scholar
[7]
GongY. D., ShumP., TangD. Y., LuC., GuoX.. Optics Express, 2003, 11: 2480
CrossRef Google scholar
[8]
ScaloraM., SyrchinM. S., AkozbekN., Poliakov EvgeniY., Aguanno GiuseppeD., MattiucciN., Bloemer MarkJ., Zheltikov AlekseiM.. Phys. Rev. Lett., 2005, 95: 013902-1
[9]
CuiW., ZhuY., LiH., LiuS.. Phys. Lett. A, 2009, 374: 380
CrossRef Google scholar
[10]
TianZ., LiuS.-l., ZhengH.-j.. Journal of Optoelectronics·Laser, 2010, 21: 537
[11]
KourakisI., ShuklaP. K.. Phys. Rev. E, 2005, 72: 016626-1
CrossRef Google scholar
[12]
WenS., WangY., SuW., XiangY., FuX., FanD.. Phys. Rev. E, 2006, 73: 036617-1
CrossRef Google scholar
[13]
LiX.-l., ZhangL.-s., ZhangW., YangL.-j., LiX.-w.. Journal of Optoelectronics·Laser, 2010, 21: 149
[14]
ZhouW., SuW. H., ChengX., XiangY. J., DaiX. Y., WenS. C.. Opt. Commun., 2009, 282: 1440
CrossRef Google scholar
[15]
MaluckovA., HadzievskiL., LazaridesN., TsironisG. P.. Phys. Rev. E, 2008, 77: 046607-1
[16]
XiangY., DaiX., WenS., FanD.. J. Opt. Soc. Am. B, 2011, 28: 908
CrossRef Google scholar
[17]
PendryJ. B.. Phys. Rev. Lett., 2000, 85: 3966
CrossRef Google scholar

This work has been supported by the Key Project of Chinese Ministry of Education (No. 210186), and the Scientific Research Foundation of CUIT (No.2010d1).

Accesses

Citations

Detail

Sections
Recommended

/