Size influence on the fluorescence decay time of ZnS:Mn2+ nanocrystals

Jing Song , Gao-feng Zhang , Tong-yan Xing , Jian-ping Xu , Xiao-song Zhang , Qing-song Huang

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (1) : 1 -3.

PDF
Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (1) : 1 -3. DOI: 10.1007/s11801-012-1123-2
Article

Size influence on the fluorescence decay time of ZnS:Mn2+ nanocrystals

Author information +
History +
PDF

Abstract

ZnS:Mn2+ nanocrystals (NCs) with particle size from 1.9 nm to 3.2 nm are synthesized via chemical precipitation method with different [S2−]/[Zn2+] ratios. The size dependent decay for Mn emission exhibits a double exponential behavior. And two lifetime values, in millisecond time domain, can both be shortened with size increasing, which is attributed to enhanced interaction between host and Mn2+ impurity. A molecular structure model is proposed to interpret the tendency of two lifetime components, which is correlated to the number of S vacancy (Vs) defects around Mn2+.

Keywords

Lifetime Component / Fractional Contribution / Chemical Precipitation Method / Fluorescence Decay Time / Molecular Structure Model

Cite this article

Download citation ▾
Jing Song, Gao-feng Zhang, Tong-yan Xing, Jian-ping Xu, Xiao-song Zhang, Qing-song Huang. Size influence on the fluorescence decay time of ZnS:Mn2+ nanocrystals. Optoelectronics Letters, 2012, 8(1): 1-3 DOI:10.1007/s11801-012-1123-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AlivisatosA. P.. Science, 1996, 271: 933

[2]

LiM., LiJ. C.. Mater. Lett., 2006, 60: 2526

[3]

PodhorodeckiA., NykM., KudrawiecR., MisiewiczJ., StrekbW.. Electrochem. Solid-State Lett., 2007, 10: H88

[4]

DaiQ. Q., KanS. H., LiD. M., JiangS., ChenH. Y., ZhangM. Z., GaoS. Y., NieY. G., LuH. L., QuQ. L., ZouG. T.. Mater. Lett., 2006, 60: 2925

[5]

HuH., ZhangW. H.. Opt. Mater., 2006, 28: 536

[6]

LiL. S., HuJ. T., YangW. D., AlivisatosA. P.. Nano Lett., 2001, 1: 349

[7]

QuL.H., YuW. W., PengX. G.. Nano Lett., 2004, 4: 465

[8]

SadhuS., SenT., PatraA.. Chem. Phys. Lett., 2007, 440: 121

[9]

SapraS., PrakashA., GhangrekarA., PeriasamyN., SarmaD. D.. J. Phys. Chem. B, 2005, 109: 1663

[10]

GanC. L., ZhangY. P., BattagliaD., PengX. G., XiaoM.. Appl. Phys. Lett., 2008, 92: 241111

[11]

DongD. Q., LiL., ZhangX. S., HanX., AnH. P.. Chin. Phys. Lett., 2007, 24: 2661

[12]

SuyverJ. F., WuisterS. F., KellyJ. J., MeijerinkA.. Nano Lett., 2001, 1: 429

[13]

FanY. Y., ChengH. M., WeiY. L., SuG., ShenZ. H.. Carbon, 2000, 38: 789

[14]

SooklalK., CullumB. S., AngelS. M., MurphyC. J.. J. Phys. Chem., 1996, 100: 4551

[15]

JavedI., WangB. Q., LiuX. G., ZhuH. C., YuD. P., YuR. H.. J. Nanosci. Nanotechnol., 2009, 9: 6823

[16]

FujiiK., IshikawaT., OhyamaT., ItoK., FujiyasuH., KiichiT.. Physica B, 2001, 302–303: 312

[17]

TripathiB., VijayY. K., WateS., SinghF., AvasthiD. K.. Solid-State Electron., 2007, 51: 81

[18]

WuA. H., ShenX. H., GaoH. C.. J. Photochem. Photobiol. A, 2007, 185: 144

AI Summary AI Mindmap
PDF

86

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/