Influence of relative phase on propagation effect in open V-type three-level system

Ying Liang , Ke-ning Jia , Zhong-bo Liu , Xi-jun Fan

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (1) : 72 -75.

PDF
Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (1) : 72 -75. DOI: 10.1007/s11801-012-1104-5
Article

Influence of relative phase on propagation effect in open V-type three-level system

Author information +
History +
PDF

Abstract

In this paper we study the influence of the relative phase between the probe and driving fields on propagation effect in an open Doppler broadening V-type three-level atomic system with spontaneously generated coherence (SGC) by using the calculation result of the density matrix motion equations and the propagation equations of the driving and probe fields. It is shown that the relative phase (Φ) has remarkable periodical influence on the propagation effect, and the period is 2π. By selecting appropriate value of Φ, we can get larger lasing without inversion (LWI) gain and longer propagation distance in which gain exists, and hence obtain higher probe field (i.e. LWI) intensity. When Φ=π/2, the largest LWI gain and probe field intensity can be got. In addition, the atomic exit rate (γ0) and ratio (S) of the atomic injection rates also have a considerable modulation role on the phase-dependent propagation effect. In certain value range of γ0 (S), LWI gain and probe field intensity increase with γ0 (S) increasing. In the open system, LWI gain and probe field intensity much larger than those in the corresponding closed system can be obtained.

Keywords

Relative Phase / Probe Field / Propagation Distance / Atomic System / Rabi Frequency

Cite this article

Download citation ▾
Ying Liang, Ke-ning Jia, Zhong-bo Liu, Xi-jun Fan. Influence of relative phase on propagation effect in open V-type three-level system. Optoelectronics Letters, 2012, 8(1): 72-75 DOI:10.1007/s11801-012-1104-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MompartJ., CorbalanR.. J. Opt. B: Quantum Semiclass. Opt., 2000, 2: R7

[2]

WaldmuellerI., WankeM.C., ChowW.W.. Phys. Rev. Lett., 2007, 99: 117401

[3]

KilinS. Y., KapaleK. T., ScullyM. O.. Phys. Rev. Lett., 2008, 100: 173601

[4]

LiberatoS. D., CiutiC.. Phys. Rev. Lett., 2009, 102: 136403

[5]

ScullyM. O.. Phys. Rev. Lett., 2010, 104: 207701

[6]

WuJ. H., GaoJ.Y.. Phys. Rev. A, 2002, 65: 063807

[7]

GhafoorF., ZhuS. Y., ZubairyM. S.. Phys. Rev. A, 2000, 62: 013811

[8]

ZubairyM. S., QamarS.. Opt. Commun., 2000, 179: 275

[9]

WuJ. H., GaoJ.Y.. J. Opt. Soc. Am. B, 2002, 19: 2863

[10]

WuJ. H., GaoJ. Y.. Phys. Rev. A, 2002, 65: 063807

[11]

YuanS., WuJ.H., GaoJ.Y.. J. Opt. Soc. Am. B, 2002, 19: 1185

[12]

XuW. H., ZhangH. F., GaoJ. Y., ZhangB.. J. Opt. Soc. Am. B, 2003, 20: 2377

[13]

LiuC. P., GongS. Q., FanX. J., XuZ. Z.. Opt. Commun., 2004, 239: 383

[14]

FanX. J., CuiN., TianS. F.. J. Modern Opt., 2005, 52: 2759

[15]

FanX. J., LiA. Y., TianS. F., TongD. M., GongS. Q., XuZ. Z.. Eur. Phys. J.D., 2007, 42: 483

[16]

LukinM. D., ScullyM. O., WelchG. R.. Laser Phys., 1996, 6: 436

[17]

YelinS. F., LukinM. D., ScullyM. O., MandeI. P.. Phys. Rev. A, 1998, 57: 3858

[18]

MompartJ., AhufingerV., CorbalanR.. Opt. B: Quantum Semiclass. Opt., 2000, 2: 359

[19]

QiaoH. X., YangY. L., TanX., TongD. M., FanX. J.. Chin. Phys. B, 2008, 17: 3735

[20]

LiJ. J., LiuC. P., CuiN., LiH., FanX. J.. Chin. Opt. Lett., 2004, 2: 725

[21]

FanX. J., XuH., TianS. F., TongD. M., XuZ. Z.. Opt. Commun., 2004, 241: 399

[22]

ZhouP., SwainS.. Phys. Rev. Lett., 1997, 78: 832

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/