Design and realization of random measurement scheme for compressed sensing

Cheng-jun Xie , Lin Xu

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (1) : 60 -62.

PDF
Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (1) : 60 -62. DOI: 10.1007/s11801-012-1097-0
Article

Design and realization of random measurement scheme for compressed sensing

Author information +
History +
PDF

Abstract

Design and realization of random measurement scheme for compressed sensing (CS) are presented in this paper, and lower limits of the measurement number are achieved when the precise reconstruction is realized. Four kinds of random measurement matrices are designed according to the constraint conditions of random measurement. The performance is tested employing the algorithm of stagewise orthogonal matching pursuit (StOMP). Results of the experiment show that lower limits of the measurement number are much better than the results described in Refs.[13–15]. When the ratios of measurement to sparsity are 3.8 and 4.0, the mean relative errors of the reconstructed signals are 8.57 × 10−13 and 2.43 × 10−14, respectively, which confirms that the random measurement scheme of this paper is very effective.

Keywords

Compress Sense / Synthetic Aperture Radar / Random Measurement / Measurement Matrix / Compress Sense Theory

Cite this article

Download citation ▾
Cheng-jun Xie, Lin Xu. Design and realization of random measurement scheme for compressed sensing. Optoelectronics Letters, 2012, 8(1): 60-62 DOI:10.1007/s11801-012-1097-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

DonohoD.. IEEE Transactions on Information Theory, 2006, 52: 1289

[2]

CandèsE., RombergJ., TaoT.. IEEE Transactions on Information Theory, 2006, 52: 489

[3]

RombergJ.. IEEE Signal Processing Magazine, 2006, 25: 14

[4]

DuarteM. F., DavenportM. A., TakharD., SunT., KellyK. F., BaraniukR. G.. IEEE Signal Processing Magazine, 2008, 25: 83

[5]

Baraniuk R and Steeghs P, Compressive Radar Imaging, IEEE: Proceedings of the Radar Conference, Washington D.C., 128 (2007).

[6]

Bhattacharya S, Blumensath T, Mulagrew B and Davies M, Fast Encoding of Synthetic Aperture Radar Raw Data Using Compressed Sensing, IEEE Proceedings of Statistical Signal Processing, Washington D. C., 448 (2007).

[7]

LustigM., DonohoD. L., PaulyJ. M.. Magnetic Resonance in Medicine, 2007, 58: 1182

[8]

HuS., LustigM., ChenA. P., CraneJ., KerrA., KelleyD. A., HurdR., KurhanewiczJ., NelsonS. J., PaulyJ. M., VigneronD. B.. Journal of Magnetic Resonance, 2008, 192: 258

[9]

CandèsE., TaoT.. IEEE Transaction on Information Theory, 2005, 51: 4203

[10]

CandèsE., RombergJ.. Found. Comput. Math., 2006, 6: 227

[11]

CandèsE., WakinM. B.. IEEE Signal Processing Magazine, 2008, 25: 21

[12]

Gemmeke J F and Cranen B, Using Sparse Representations for Missing Data Imputation in Noise Robust Speech Recognition, European Signal Processing Conf. (EUSIPCO), Lausanne, Switzerland, 987 (2008).

[13]

BaraniukR.. IEEE Signal Processing Magazing, 2007, 24: 118

[14]

ShiG.-m., LiuD.-h., GaoD.-h., LiuZ., LinJ., WangL.-j.. Acta Electronica Sinica, 2009, 37: 1070

[15]

GaoR.. Matching Pursuit Algorithm for Image Reconstruction Based on Compressive Sensing, 2009, Beijing, Beijing Jiaotong University: 2

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/