Design and analysis of spectral beam combining system for fiber lasers based on a concave grating

Zhuo-liang Wu , Shang-hong Zhao , Xing-chun Chu , Xi Zhang , Sheng-bao Zhan , Li-hua Ma

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (1) : 33 -36.

PDF
Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (1) : 33 -36. DOI: 10.1007/s11801-012-1093-4
Article

Design and analysis of spectral beam combining system for fiber lasers based on a concave grating

Author information +
History +
PDF

Abstract

A novel fiber laser spectral beam combining scheme based on a concave grating is presented. The principle of the presented system is analyzed, and a concave grating with blazed structure for spectral beam combining is designed. The combining potential of the system is analyzed, and the results show that 39 Yb-doped fiber laser can be spectrally beam combined via the designed system. By using scalar diffraction theory, the combining effect of the system is analyzed. The results show that the diffraction efficiency of the designed concave grating is higher than 72% over the whole gain bandwidth, and the combining efficiency is 73.4%. With output power of 1 kW for individual fiber laser, combined power of 28.6 kW can be achieved.

Keywords

Fiber Laser / Diffraction Efficiency / Gain Bandwidth / Volume Bragg Grating / Waist Radius

Cite this article

Download citation ▾
Zhuo-liang Wu, Shang-hong Zhao, Xing-chun Chu, Xi Zhang, Sheng-bao Zhan, Li-hua Ma. Design and analysis of spectral beam combining system for fiber lasers based on a concave grating. Optoelectronics Letters, 2012, 8(1): 33-36 DOI:10.1007/s11801-012-1093-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

GapontsevV., MoshegovN., TrubenkoP., KomissarovA., BerishevI., RaiskyO., StrougovN., ChuyanovV., KuangG., MaksimovO., OvtchinnikovA.. Proc. of SPIE, 2009, 7198: 7198O-1

[2]

MuW., ZhaoC.-j.. Journal of Optoelectronics Laser, 2009, 20: 1446

[3]

Connor M O, Gapontsev V, Fomin V, Abramov M and Ferin A, Power Scaling of SM Fiber Lasers Toward 10 kW, Lasers and Electro-Optics International Quantum Electronics Conference, CThA3 (2009).

[4]

DawsonJ. W., MesserlyM. J., BeachR. J., ShverdinM. Y., StappaertsE. A., SridharanA. K., PaxP. H., HeebnerJ. E., SidersC. W., BartyC. P.. Optics Express, 2008, 16: 13240

[5]

ZhangD., ZhaoS.-h., WuZ.-l., ChuX.-C., ZhanS.-B.. Journal of Optoelectronics Laser, 2010, 21: 12941

[6]

WuZ.-l., ZhaoS.-h., ChuX.-c., ZhangD., ZhanS.-B., ShiL., MaL.-H.. Acta Optica Sinica, 2011, 31: 0214001

[7]

WirthC, SchmidtO, TsybinI, SchreiberT, PeschelT, BrücknerF, ClausnitzerT, LimpertJ, EberhardtR, TünnermannA, GowinM, HaveE, LudewigtK, JungM. Optics Express, 2009, 17: 1178

[8]

BochoveE. J.. IEEE Journal of Quantum Electronics, 2002, 38: 432

[9]

ZhanS.-b., ZhaoS.-h., WangW.-h., ZhangJ.-m., WuZ.-l., XuJ.. Semiconductor Optoelectronics, 2008, 29: 753

[10]

AndrusyakO., CiapurinI., SmirnovV., VenusG., GlebovL.. Proc. of SPIE, 2007, 6453: 64531L-1

[11]

AndrusyakO., SmirnovV., VenusG., GlebovL.. Optics Communications, 2009, 282: 2560

[12]

LinC.-T.. Optics Express, 2010, 18: 6108

[13]

McGreerK. A.. IEEE Photonics Technology Letters, 1995, 7: 324

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/