Thermal distribution analysis of multi-core photonic crystal fiber laser

Yi-bo Zheng , Jian-quan Yao , Lei Zhang , Yuan Wang , Wu-qi Wen , Lei Jing , Zhi-gang Di , Jian-yi Kang

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (1) : 13 -16.

PDF
Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (1) : 13 -16. DOI: 10.1007/s11801-012-1073-8
Article

Thermal distribution analysis of multi-core photonic crystal fiber laser

Author information +
History +
PDF

Abstract

The thermal properties of photonic crystal fiber (PCF) laser with 18 circularly distributed cores are investigated by using full-vector finite element method (FEM). The results show that the 18-core PCF has a more effective thermal dispersion construction compared with the single core PCF and 19-core PCF. In addition, the temperature distribution of 18-core PCF laser with different thermal loads is simulated. The results show that the core temperature approaches the fiber drawing value of 1800 K approximately when the thermal load is above 80 W/m which corresponds to the pumping power of 600 W approximately, while the coating temperature approaches the damage value of about 550 K when the thermal load is above 15 W/m which corresponds to the pumping power of 110 W approximately. Therefore the fiber cooling is necessary to achieve power scaling. Compared with other different cooling systems, the copper cooling scheme is found to be an effective method to reduce the thermal effects.

Keywords

Fiber Laser / Thermal Load / Photonic Crystal Fiber / Outer Cladding / Fiber Drawing

Cite this article

Download citation ▾
Yi-bo Zheng, Jian-quan Yao, Lei Zhang, Yuan Wang, Wu-qi Wen, Lei Jing, Zhi-gang Di, Jian-yi Kang. Thermal distribution analysis of multi-core photonic crystal fiber laser. Optoelectronics Letters, 2012, 8(1): 13-16 DOI:10.1007/s11801-012-1073-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

YeongY., SahuJ. K., PayneD. N., NilssonJ.. Opt. Exp., 2004, 12: 6088

[2]

RuanS.-c., YangB., ZhuC.-y., LinH.-j., YaoJ.-q.. Acta Photonica Sinica, 2004, 33: 15

[3]

BrooksC. D., Di TeodoroF.. Appl. Phys. Lett., 2006, 89: 111

[4]

LimpertJ., SchreiberT., NolteS., ZellmerH., TunnermannT., IliewR., LedererF., BroengJ., VienneG., PeterssonA., JakobsenC.. Opt. Exp., 2003, 11: 818

[5]

LimpertJ., Deguil-RobinN., SalinF., RöserF., LiemA., SchreiberT., NolteS., ZellmerH., TünnermannA., BroengJ., PeterssonA., JakobsenC.. Opt. Exp., 2005, 13: 1055

[6]

JiangY., WeiY., DengG., HuT., FengG.. Optoelectronics Letters, 2010, 6: 328

[7]

ChenW., LiS., WangD., LuoW., HuangW., KeY.. Journal of Optoelectronics Laser, 2010, 21: 1449

[8]

MichailleL., TaylorD. M., BennettC. R., ShepherdT. J., WardB. G.. Optics Letters, 2008, 33: 71

[9]

MichailleL., BennettC.R., TaylorD.M., ShepherdT.J.. Selected Topics in Quantum Electronics, 2009, 15: 328

[10]

FangX., HuM., XieC., SongY., ChaiL., WangC.. Optics Letters, 2011, 36: 1005

[11]

WangY.. IEEE Photon. Tech. Lett., 2004, 16: 63

[12]

LiL., LiH., QiuT., TemyankoV. L., MorrellM. M., SchülzgenA., MafiA., MoloneyJ. V., PeyghambarianN.. Opt. Exp., 2005, 13: 3420

[13]

LimpertJ., SchreibeiT., LiemA., NolteS., ZellmerH., PeschelT., GuyenotV., TünnermannA.. Opt. Exp., 2003, 11: 2982

[14]

ElahiP., NadgaranH., KalantarifardF.. Pramana, 2007, 68: 529

[15]

ChenS., FengY.. Acta Photonica Sinica, 2008, 37: 1134

[16]

HanX.-m., YangD.-x., ZhaoJ.-l., HouJ.-p., DuanK.-l., WangY.-s.. Chinese Journal of Lasers, 2009, 36: 2822

[17]

LiJ., DuanK., DaiZ., OuZ., LiuY., LiuY.. Optik, 2010, 121: 1243

[18]

RohsenowW. M., HartnettJ. P., ChoY. I.. Handbook of Heat Transfer, 1998, New York, McGraw-Hill Companies: 78

AI Summary AI Mindmap
PDF

98

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/