Analysis of false alarm for imaging space-based laser warning system

Hong-jun Dong, Zhong-liang Zhou, Fu-yu Huang

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (2) : 105-108.

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (2) : 105-108. DOI: 10.1007/s11801-012-1070-y
Article

Analysis of false alarm for imaging space-based laser warning system

Author information +
History +

Abstract

In view of the problem of false alarm in imaging space-based laser warning system, the effects of sunlight and lightning on the threaten laser detection and attack event determination are studied by analyzing and calculating the radiant energy density and space-time feature of imaging spot, respectively. The results show that the main false alarm resourses of spacebased laser warning system are sunlight and lightning. The sunlight should exposure the detector directly in one ninth of the satillite orbital period, and the imaging spot of sun is similar to the attack laser. The lightning imaging spot is similar to the illumination laser. About 1.4 lightning events can occur in the field of view (FOV) of the warning system per second. It could not discriminate spots of sun, lightning and threaten laser by the frame subtraction technology.

Keywords

False Alarm / Warning System / Imaging Spot / Lightning Discharge / Illumination Laser

Cite this article

Download citation ▾
Hong-jun Dong, Zhong-liang Zhou, Fu-yu Huang. Analysis of false alarm for imaging space-based laser warning system. Optoelectronics Letters, 2012, 8(2): 105‒108 https://doi.org/10.1007/s11801-012-1070-y

References

[1]
DuboisJ., ReidF.. Detecting Laser Sources on the Battlefield, Ottawa, Proc. SPIE, 2007, 6792: 67962F
[2]
McAulayA. D.. Detecting Modulated Lasers in the Battlefield and Determining Their Direction, Orlando, Proc. SPIE, 2009, 7336: 73361J
[3]
HillanfD. H., PhippsetG. S., JingleC. M.. Satellite Threat Warning and Attack Reporting, IEEE Aerospace Conference, 1998, 2: 207
[4]
Donald W. Wilmot, William R. Owens and Robert J. Shelton, The Infrared and Electro-Optical Systems Handbook, SPIE Optical Engieering Press, 77 (1993).
[5]
YuL., LinG.-y., QuY., WangS.-r.. Journal of Optoelectronics Laser, 2011, 22: 42
[6]
KongY.-y., ZhouJ.-j., ZhangY.. Journal of Optoelectronics Laser, 2010, 21: 1257
[7]
DongH.-j., ZhouZ.-l., HuangF.-y.. Optical Technique, 2011, 37: 376
[8]
DongH.-j., ZhouZ.-l.. Acta Photonica Sinica, 2011, 40: 388
CrossRef Google scholar
[9]
LiF.-q., ChengX., YangY., LiX.-y., GongS.-s.. Infrared and Laser Engineering, 2008, 37: 331
[10]
ZhangH.-h., WangJ.-y., ShuR., HuY.. J. Infrared Millim. Waves, 2006, 25: 426
[11]
LightT. E., SuszcynskyD. M., KirklandM. W., JacobsonA. R.. J. Geophys. Res., 2001, 106: 17103
CrossRef Google scholar
[12]
ChristianH. J., BlakesleeR. J., GoodmanS. J.. J. Geophys. Res., 1989, 94: 13329
CrossRef Google scholar
[13]
BoccippioD. J., KoshakW. J., BlakesleeR. J.. J. Atmos. Oceanic Technol., 2002, 19: 1318
CrossRef Google scholar
[14]
ChristianH. J., BlakesleeR. J., BoccippioD. J., BoeckW. L., BuechlerD. E., DriscollK. T., GoodmanS. J., HallJ. M., KoshakW. J., MachD. M., StewartM. F.. J. Geophys. Res., 2003, 108: 4005
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/