Sub-picosecond chirped pulse propagation in concave-dispersion-flattened fibers

Xin Li , Hong-jun Zheng , Hui-shan Yu , Shan-liang Liu

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (1) : 48 -51.

PDF
Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (1) : 48 -51. DOI: 10.1007/s11801-012-1069-4
Article

Sub-picosecond chirped pulse propagation in concave-dispersion-flattened fibers

Author information +
History +
PDF

Abstract

Tianjin University of Technology and Springer-Verlag Berlin Heidelberg 2012 C We propose the sub-picosecond chirped soliton pulse propagation in concave-dispersion-flattened fibers (CDFF). The effects of pulse characteristics and the fiber dispersion parameters on propagation characteristics of the chirped soliton pulse are numerically investigated in the CDFF by the split-step Fourier method (SSFM). The unchirped soliton pulse can stably propagate with unchanged pulse width in the CDFF. The temporal full width at half maximum (FWHM) of the chirped soliton performs a damped oscillation with the increase of propagation distance. The period and amplitude of the oscillation increase with the increase of the chirp parameter |C|. The effect of high-order dispersion (β3β6) on soliton propagation characteristics can be neglected. The soliton pulse slightly broadens with the increase of propagation distance and still maintains soliton characteristics when the fiber loss (ATT) is further considered. The variation of root-meansquare (RMS) spectral width with propagation distance is opposite to that of the temporal width. The output spectrum of soliton has a single peak for the unchirped case, while has multi-peak for chirped case. The temporal width of the soliton obviously increases with the increase of the initial width, decreases with the increase of dispersion peak D0 of the fiber, and slightly increases with the decrease of dispersion coefficients k1 and k2 of the fiber.

Keywords

Soliton / Propagation Distance / Photonic Crystal Fiber / Fiber Loss / Soliton Pulse

Cite this article

Download citation ▾
Xin Li, Hong-jun Zheng, Hui-shan Yu, Shan-liang Liu. Sub-picosecond chirped pulse propagation in concave-dispersion-flattened fibers. Optoelectronics Letters, 2012, 8(1): 48-51 DOI:10.1007/s11801-012-1069-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AgrawalG. P.. Nonlinear Fiber Optics, Third Edition & Applications of Nonlinear Fiber Optics, 2002, Beijing, Publishing House of Electronics Industry: 266

[2]

NanY. B., LouC. Y., WangJ. P., HuoL., YangY. F.. Optics Communications, 2005, 256: 428

[3]

WenY. J., ChaeC. J.. Optics Communications, 2006, 260: 691

[4]

WuJ., LiY.-h., LouC.-y., GaoY.-z.. Acta Optica Sinica, 2000, 20: 325

[5]

KanoH., HamaguchiH.. Applied Physics Letters, 2004, 85: 4298

[6]

MoriK., TakaraH., KawanishiS., SaruwatariM., MoriokaT.. Electron. Lett., 1997, 33: 1806

[7]

MoriK., TakaraH., KawanishiS.. J. Opt. Soc. Am. B, 2001, 18: 1780

[8]

ChengY.-z., LiY.-z., QuG., ZuW.. Acta Physica Sinica, 2006, 55: 0717

[9]

ZhengH., LiuS., LiX., XuJ.. Journal of Optoelectronics·Laser, 2007, 18: 919

[10]

XuW.-C., JinW., XuY.-Z., CuiH., LiuS.-H.. Chin. Phys. Lett., 2004, 21: 1089

[11]

KiblerB., MartynkienT., SzpulakM., FinotC., FatomeJ., WojcikJ., UrbanczykW., WabnitzS.. Opt. Express, 2009, 17: 10393

[12]

HuX., WangY., ZhaoW., YangZ., ZhangW., LiC., WangH.. Appl. Opt., 2010, 49: 4984

[13]

PeacockA. C.. Opt. Lett, 2010, 35: 3697

[14]

LiuS.-l., ZhengH.-j.. Chinese Journal of Lasers, 2006, 33: 199

[15]

ZhengH.-j., LiuS.-l.. Chinese Physics, 2006, 15: 1831

[16]

LiuS.-l., ZhengH.-j.. Acta Optica Sinica, 2006, 26: 1313

[17]

ZhengH.-j., LiuS.-l., LiX., TianZ.. J. Appl. Phys., 2007, 102: 103106-1-4

[18]

ZhengH.-j., LiuS.-l., TianZ., LiX.. Chinese Journal of Lasers, 2008, 35: 861

[19]

ZhengH.-j., LiuS.-l., LiX., WuC.. Optics & Laser technology, 2011, 43: 1321

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/