Reducing magnetic zero drift by optimizing proportions of neon dual isotopes in laser gyros

Nan Di , Jian-lin Zhao

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (2) : 153 -156.

PDF
Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (2) : 153 -156. DOI: 10.1007/s11801-012-1052-0
Article

Reducing magnetic zero drift by optimizing proportions of neon dual isotopes in laser gyros

Author information +
History +
PDF

Abstract

The relationships among the proportions of the neon dual isotopes ratio, scale factor corrections (SFCs), light intensities, environmental magnetic field and magnetic zero drift are discussed in detail by numerical simulations. The results show that the unification of the optimal operating point (OP) and the frequency stabilization operating point (FSP) is achievable by adjusting the proportions of neon dual isotopes accurately and tuning the cavity length with frequency stabilization system exactly. In that case, the left-rotation and right-rotation gyros can obtain the same SFC, which can decrease the magnetic sensitivity of the laser gyro efficiently. The Zeeman effect zero drift and the Faraday bias zero drift are both reduced by two orders of magnitude, while the magnetic shielding requirement of laser tube is decreased by 1–2 orders of magnitude.

Keywords

Operating Point / Cavity Length / Gain Curve / Laser Tube / Zero Drift

Cite this article

Download citation ▾
Nan Di, Jian-lin Zhao. Reducing magnetic zero drift by optimizing proportions of neon dual isotopes in laser gyros. Optoelectronics Letters, 2012, 8(2): 153-156 DOI:10.1007/s11801-012-1052-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

GaoB.-l., LiS.-t.. Laser Gyroscope, 1984, Changsha, National University of Defense Technology Press: 27

[2]

YiX.-s., YangY.-m., MaD.-y., ZhangC.. Journal of Optoelectronics·Laser, 2010, 21: 178

[3]

ChenL.-f., HanZ.-h., ChenY., WangJ.-l., JiC.-p.. Acta Photonica Sinica, 2006, 35: 974

[4]

ChowW., HambenneJ., HutchingsT., SandersV., SargentM., ScullyM.. IEEE Journal of Quantum Electronics, 1980, 16: 918

[5]

StatzH., DorschnerT. A., HoltzM., SmithI. W.. The Multioscillator Ring Laser Gyroscope, 1985, Amsterdam, North Holland Press: 229

[6]

JiangY.-n.. The Ring Laser Gyroscope, 1985, Beijing, Tsinghua University Press: 72

[7]

Martin G. J., Gillespie S. C. and Volk C. H., The Litton 11cm Triaxial Zero-Lock Gyro, IEEE Position Location and Navigation Symposium, Atlanta, 49 (1996).

[8]

ZhaoZ.-x.. Research on the Influence of Environmental Magnetic Field on the Precision of Differential Ring Laser Gyroscope, 2006, Changsha, National University of Defense Technology: 24

[9]

AzarovaV. V., GolyaevY. D., DmitrievV. G.. Quantum Electronics, 2000, 30: 96

[10]

KodavatiB., ApparaoT., Rao MallaJ. M., Ram BabuE., VenkateswarluR.. International Journal of Engineering Science and Technology, 2010, 2: 5723

[11]

WangZ.-g., LongX.-w., WangF., YuanJ.. Acta Optica Sinica, 2010, 29: 3202

[12]

YinG.-l., LouS.-q., TangZ.-w.. Journal of Optoelectronics·Laser, 2010, 21: 1645

[13]

WangZ.-g., LongX.-w., WangF., HuangY., XuG.-m.. Optical Technic, 2010, 36: 540

[14]

WangZ.-g., LongX.-w., WangF.. Acta Optica Sinica, 2009, 29: 2892

[15]

YANG Jian-qiang, YUAN Bao-lun, Gao Meng and Zhu Yong, Study on the Magnetic Sensitivity of Four Frequency Differential Ring Laser Gyro, The 2nd IEEE International Conference on Information Management and Engineering (ICIME), Chengdu, 529 (2010).

[16]

J. Belfi, N. Beverini, F. Bosi, G. Carelli, A. Di Virgilio, E. Maccioni, A. Ortolan and F. Stefani, Applied Physics B: Lasers and Optics, arXiv:1104. 0418v3, 2011.

[17]

Jennifer S Strabley, Enhanced Scale Factor Ring Laser Gyroscope, US Patent, 7907284, 2011.

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/