Research on pulse edge extraction by using nonlinear optical fiber-loop mirror

Yong-jun Peng, Kun Qiu, Si-wei Ji

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (1) : 9-12.

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (1) : 9-12. DOI: 10.1007/s11801-012-1051-1
Article

Research on pulse edge extraction by using nonlinear optical fiber-loop mirror

Author information +
History +

Abstract

The output characteristics of nonlinear optical fiber-loop mirror are analyzed in detail when the pump pulses with the same wavelength are input in the both directions for recovering the clock component of the signal spectrum. It is found that the double output pulses are produced in the transmission port of the nonlinear optical fiber-loop mirror. The output pulse peaks are located in time domain at the rising and falling edges of the pump pulses. It is demonstrated that the rising and falling edges of the pump pulse can be directly extracted by this method. Through numerical simulation, the effects of the relative delay of pump pulses and the dispersion of fiber on the characteristics of output pulses are studied. By spectrum analysis, it is found that the spectrum of output pulse sequence includes the clock components of the pump pulse sequence, and a new idea is provided for all-optical clock extraction.

Keywords

Pump Pulse / Output Pulse / Group Velocity Dispersion / Stimulate Brillouin Scattering / Probe Wave

Cite this article

Download citation ▾
Yong-jun Peng, Kun Qiu, Si-wei Ji. Research on pulse edge extraction by using nonlinear optical fiber-loop mirror. Optoelectronics Letters, 2012, 8(1): 9‒12 https://doi.org/10.1007/s11801-012-1051-1

References

[1]
ChungS. H., TangX., CartledgeJ. C.. IEEE Photonics Technology Letters, 2009, 21: 1761
CrossRef Google scholar
[2]
ItoC., CartledgeJ. C.. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14: 616
CrossRef Google scholar
[3]
ZhouX., YuJ., HuangM., ShaoY., WangT., MagillP., CvijeticM., NelsonL., BirkM., ZhangG., TenS., MatthewH. B., MishraS. K.. Journal of Lightwave Technology, 2010, 28: 456
CrossRef Google scholar
[4]
GnauckA. H., CharletG., TranP., WinzerP. J., DoerrC. R., CentanniJ. C., BurrowsE. C., KawanishiT., SakamotoT., HigumaK.. Journal of Lightwave Technology, 2008, 26: 79
CrossRef Google scholar
[5]
GregoryR., WinzerJ., DoerrC.. Journal of Lightwave Technology, 2007, 25: 233
CrossRef Google scholar
[6]
MaY., YangQ., TangY., ChenS., ShiehW.. Optics Express, 2009, 17: 9421
CrossRef Google scholar
[7]
TangY., ShiehW.. Journal of Lightwave Technology, 2009, 27: 3511
CrossRef Google scholar
[8]
ArahiraS., TakahashiH., NakamuraK., YaegashiH., OgawaY.. IEEE Quantum Electronics, 2009, 45: 476
CrossRef Google scholar
[9]
ArahiraS., TakahashiH., YaegashiH.. IEEE Journal of Quantum Electronics, 2009, 45: 1240
CrossRef Google scholar
[10]
TangX., CartledgeJ. C., ShenA.. Journal of Lightwave Technology, 2009, 27: 4603
CrossRef Google scholar
[11]
NgoM. N., RoncinV., LeQ. T., BramerieL., ChevallierD., ablondeL., ShenA., DuanG.-H., SimonJ.-C.. IEEE Photonics Technology Letters, 2008, 20: 1557
CrossRef Google scholar
[12]
ZhouL., ChenH., PoonA. W.. Journal of Lightwave Technology, 2008, 26: 1950
CrossRef Google scholar
[13]
AgrawalG. P.. Nonlinear Fiber Optics & Application of Nonlinear Fiber Optics, 2009, Beijing, Publishing House of Electronics Industry
[14]
StamatiadisC., KouloumentasC., ZakynthinosP., AvramopoulosH.. IEEE Photonics Technology Letters, 2009, 21: 456
CrossRef Google scholar

This work has been supported by the National High Technology Research and Development Program of China (No.2009AA01Z216), and the Major State Basic Research and Development Program of China (No.2011CB301703).

Accesses

Citations

Detail

Sections
Recommended

/