Defect-related visible luminescence of ZnO nanorods annealed in oxygen ambient

Jing-wei Cai, Jian-ping Xu, Xiao-song Zhang, Xi-ping Niu, Tong-yan Xing, Ting Ji, Lan Li

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (1) : 4-8.

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (1) : 4-8. DOI: 10.1007/s11801-012-1042-2
Article

Defect-related visible luminescence of ZnO nanorods annealed in oxygen ambient

Author information +
History +

Abstract

ZnO nanorods prepared by a solution-phase method are annealed at different temperatures in oxygen ambient. The luminescence properties of the samples are investigated. In the same excitation condition, the photoluminescence (PL) spectra of all samples show an ultraviolet (UV) emission and a broad strong visible emission band. The asymmetric visible emission band of annealed samples has a red-shift as the annealing temperature increasing from 200 °C to 600 °C and it can be deconvoluted into two subband emissions centered at 535 nm (green emission) and 611 nm (orange-red emission) by Gaussian-fitting analysis. Analyses of PL excitation (PLE) spectra and PL spectra at different excitation wavelengths reveal that the green emission and the orange-red emission have a uniform initial state, which can be attributed to the electron transition from Zn interstitial (Zni) to oxygen vacancy (Vo) and oxygen interstitial (Oi), respectively.

Keywords

Green Emission / Visible Emission / Zinc Nitrate Hexahydrate / Visible Emission Band / Aqueous Solution Method

Cite this article

Download citation ▾
Jing-wei Cai, Jian-ping Xu, Xiao-song Zhang, Xi-ping Niu, Tong-yan Xing, Ting Ji, Lan Li. Defect-related visible luminescence of ZnO nanorods annealed in oxygen ambient. Optoelectronics Letters, 2012, 8(1): 4‒8 https://doi.org/10.1007/s11801-012-1042-2

References

[1]
ZengH. B., XuX. J., BandoY., GautamU., ZhaiT. Y., FangX. S., LiuB. D., GolbergD.. Adv. Funct. Mater., 2009, 19: 3165
CrossRef Google scholar
[2]
LiX.-p., ZhangB.-l., ShenR.-s., ZhangY.-t., DongX., XiaX.-c.. Journal of Optoelectronics Laser, 2009, 20: 601
[3]
ZhuangJ. Y., LiL., ZhangX. S., XuJ. P., WeiJ.. Optoelectronics Letters, 2009, 5: 1
CrossRef Google scholar
[4]
YangY. H., ChenX. Y., FengY., YangG. W.. Nano Lett., 2007, 7: 3879
CrossRef Google scholar
[5]
WangN. W., YangY. H., YangG. W.. J. Phys. Chem. C, 2009, 113: 15480
CrossRef Google scholar
[6]
LookD. C., FalowG. C., ReunchanP., LimpijumnongS., ZhangS. B., NordlundK.. Phys. Rev. Lett., 2005, 95: 225502
CrossRef Google scholar
[7]
TuomistoF., RankiV., SaarinenK.. Phys. Rev. Lett., 2003, 91: 205502
CrossRef Google scholar
[8]
ZhangJ. Y., LiP. J., SunH., ShenX., DengT. S., ZhuK. T., ZhangQ. F., WuJ. L.. Appl. Phys. Lett., 2008, 93: 021116
CrossRef Google scholar
[9]
LeeS., JeongS., KimD., ParkB., MoonJ.. Superlattices Microstruct., 2007, 42: 361
CrossRef Google scholar
[10]
BiD. Q., WuF., YueW. J., GuoY., ShenW., PengR. X., WuH., WangX. K., WangM. T.. J. Phys. Chem. C, 2010, 114: 13846
CrossRef Google scholar
[11]
QuintanaM., EdvinssonT., HagfeldtA., BoschlooG.. J. Phys. Chem. C, 2007, 111: 1035
CrossRef Google scholar
[12]
AhnM. W., ParkK. S., HeoJ. H., ParkJ. G., KimD. W., ChoiK. J., LeeJ. H., HongS. H.. Appl. Phys. Lett., 2008, 93: 263103
CrossRef Google scholar
[13]
LeeC. Y., WangJ. Y., ChouY., ChengC. L., ChaoC. H., ShiuS. C., HungS. C., ChaoJ. J., LiuM. Y., SuW. F., ChenY. F., LinC. F.. Nanotechnology, 2009, 20: 425202
CrossRef Google scholar
[14]
X. Liu, X. Wu, H. Cao and R. P. H. Chang, J. Appl. Phys. 95, 3141 (2004).
[15]
DjurisicA. B., ChoyW. C. H., RoyV. A. L., LeungY. H., KwongC. Y., CheahK. W., RaoT. K. G., ChanW. K., LuiH. F., SuryaC.. Adv. Funct. Mater., 2004, 14: 856
CrossRef Google scholar
[16]
GarcesN. Y., WangL., BaiL., GilesN. C., HalliburtonL. E., CantwellG.. Appl. Phys. Lett., 2002, 81: 622
CrossRef Google scholar
[17]
DjurisicA. B., LeungY. H.. Small, 2006, 2: 944
CrossRef Google scholar
[18]
BaekS. H., SongJ. J., LimS. W.. Physica B, 2007, 399: 101
CrossRef Google scholar
[19]
LiD., LeungY. H., DjurisicA. B., LiuZ. T., XieM. H., ShiS. L., XuS. J., ChanW. K.. Appl. Phys. Lett., 2004, 85: 1601
CrossRef Google scholar
[20]
GreeneL. E., LawM., GoldbergerJ., KimF., JohnsonJ., ZhangY. F., SaykallyR., YangP. D.. Angew. Chem. Int. Ed., 2003, 42: 3031
CrossRef Google scholar
[21]
TamK. H., CheungC. K., LeungY. H., DjurišiæA. B., LingC. C., BelingC. D., FungS., KwokW. M., ChanW. K., PhillipsD. L., DingL., GeW. K.. J. Phys. Chem. B, 2006, 110: 20865
CrossRef Google scholar
[22]
BylanderE. G.. J. Appl. Phys., 1978, 49: 1188
CrossRef Google scholar
[23]
VlasenkoL. S., WatkinsG. D.. Phys. Rev. B, 2005, 72: 035203
CrossRef Google scholar
[24]
LiuH. F., ChuaS. J., HuG. X., GongH., XiangN.. J. Appl. Phys., 2007, 102: 043530
CrossRef Google scholar
[25]
StudenikinS. A., GolegoN., CociveraM.. J. Appl. Phys., 1998, 84: 2287
CrossRef Google scholar
[26]
WuX. L., SiuG. G., FuC. L., OngH. C.. Appl. Phys. Lett., 2001, 78: 16
CrossRef Google scholar
[27]
ZhangS. B., WeiS. H., ZungerA.. Phys. Rev. B, 2001, 63: 075205
CrossRef Google scholar
[28]
CaoB. Q., CaiW. P., ZengH. B.. Appl. Phys. Lett., 2006, 88: 161101
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (Nos.60877029, 10904109, 60977035 and 60907021), the Natural Science Foundation of Tianjin (Nos.09JCYBJC01400 and 10SYSYJC28100), the Key Subject for Materials Physics and Chemistry of Tianjin, and the Open Foundation of Key Laboratory of Luminescence and Optical Information of Ministry of Education (Nos.2010LOI02 and 2010LOI11).

Accesses

Citations

Detail

Sections
Recommended

/