Defect-related visible luminescence of ZnO nanorods annealed in oxygen ambient

Jing-wei Cai , Jian-ping Xu , Xiao-song Zhang , Xi-ping Niu , Tong-yan Xing , Ting Ji , Lan Li

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (1) : 4 -8.

PDF
Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (1) : 4 -8. DOI: 10.1007/s11801-012-1042-2
Article

Defect-related visible luminescence of ZnO nanorods annealed in oxygen ambient

Author information +
History +
PDF

Abstract

ZnO nanorods prepared by a solution-phase method are annealed at different temperatures in oxygen ambient. The luminescence properties of the samples are investigated. In the same excitation condition, the photoluminescence (PL) spectra of all samples show an ultraviolet (UV) emission and a broad strong visible emission band. The asymmetric visible emission band of annealed samples has a red-shift as the annealing temperature increasing from 200 °C to 600 °C and it can be deconvoluted into two subband emissions centered at 535 nm (green emission) and 611 nm (orange-red emission) by Gaussian-fitting analysis. Analyses of PL excitation (PLE) spectra and PL spectra at different excitation wavelengths reveal that the green emission and the orange-red emission have a uniform initial state, which can be attributed to the electron transition from Zn interstitial (Zni) to oxygen vacancy (Vo) and oxygen interstitial (Oi), respectively.

Keywords

Green Emission / Visible Emission / Zinc Nitrate Hexahydrate / Visible Emission Band / Aqueous Solution Method

Cite this article

Download citation ▾
Jing-wei Cai, Jian-ping Xu, Xiao-song Zhang, Xi-ping Niu, Tong-yan Xing, Ting Ji, Lan Li. Defect-related visible luminescence of ZnO nanorods annealed in oxygen ambient. Optoelectronics Letters, 2012, 8(1): 4-8 DOI:10.1007/s11801-012-1042-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ZengH. B., XuX. J., BandoY., GautamU., ZhaiT. Y., FangX. S., LiuB. D., GolbergD.. Adv. Funct. Mater., 2009, 19: 3165

[2]

LiX.-p., ZhangB.-l., ShenR.-s., ZhangY.-t., DongX., XiaX.-c.. Journal of Optoelectronics Laser, 2009, 20: 601

[3]

ZhuangJ. Y., LiL., ZhangX. S., XuJ. P., WeiJ.. Optoelectronics Letters, 2009, 5: 1

[4]

YangY. H., ChenX. Y., FengY., YangG. W.. Nano Lett., 2007, 7: 3879

[5]

WangN. W., YangY. H., YangG. W.. J. Phys. Chem. C, 2009, 113: 15480

[6]

LookD. C., FalowG. C., ReunchanP., LimpijumnongS., ZhangS. B., NordlundK.. Phys. Rev. Lett., 2005, 95: 225502

[7]

TuomistoF., RankiV., SaarinenK.. Phys. Rev. Lett., 2003, 91: 205502

[8]

ZhangJ. Y., LiP. J., SunH., ShenX., DengT. S., ZhuK. T., ZhangQ. F., WuJ. L.. Appl. Phys. Lett., 2008, 93: 021116

[9]

LeeS., JeongS., KimD., ParkB., MoonJ.. Superlattices Microstruct., 2007, 42: 361

[10]

BiD. Q., WuF., YueW. J., GuoY., ShenW., PengR. X., WuH., WangX. K., WangM. T.. J. Phys. Chem. C, 2010, 114: 13846

[11]

QuintanaM., EdvinssonT., HagfeldtA., BoschlooG.. J. Phys. Chem. C, 2007, 111: 1035

[12]

AhnM. W., ParkK. S., HeoJ. H., ParkJ. G., KimD. W., ChoiK. J., LeeJ. H., HongS. H.. Appl. Phys. Lett., 2008, 93: 263103

[13]

LeeC. Y., WangJ. Y., ChouY., ChengC. L., ChaoC. H., ShiuS. C., HungS. C., ChaoJ. J., LiuM. Y., SuW. F., ChenY. F., LinC. F.. Nanotechnology, 2009, 20: 425202

[14]

X. Liu, X. Wu, H. Cao and R. P. H. Chang, J. Appl. Phys. 95, 3141 (2004).

[15]

DjurisicA. B., ChoyW. C. H., RoyV. A. L., LeungY. H., KwongC. Y., CheahK. W., RaoT. K. G., ChanW. K., LuiH. F., SuryaC.. Adv. Funct. Mater., 2004, 14: 856

[16]

GarcesN. Y., WangL., BaiL., GilesN. C., HalliburtonL. E., CantwellG.. Appl. Phys. Lett., 2002, 81: 622

[17]

DjurisicA. B., LeungY. H.. Small, 2006, 2: 944

[18]

BaekS. H., SongJ. J., LimS. W.. Physica B, 2007, 399: 101

[19]

LiD., LeungY. H., DjurisicA. B., LiuZ. T., XieM. H., ShiS. L., XuS. J., ChanW. K.. Appl. Phys. Lett., 2004, 85: 1601

[20]

GreeneL. E., LawM., GoldbergerJ., KimF., JohnsonJ., ZhangY. F., SaykallyR., YangP. D.. Angew. Chem. Int. Ed., 2003, 42: 3031

[21]

TamK. H., CheungC. K., LeungY. H., DjurišiæA. B., LingC. C., BelingC. D., FungS., KwokW. M., ChanW. K., PhillipsD. L., DingL., GeW. K.. J. Phys. Chem. B, 2006, 110: 20865

[22]

BylanderE. G.. J. Appl. Phys., 1978, 49: 1188

[23]

VlasenkoL. S., WatkinsG. D.. Phys. Rev. B, 2005, 72: 035203

[24]

LiuH. F., ChuaS. J., HuG. X., GongH., XiangN.. J. Appl. Phys., 2007, 102: 043530

[25]

StudenikinS. A., GolegoN., CociveraM.. J. Appl. Phys., 1998, 84: 2287

[26]

WuX. L., SiuG. G., FuC. L., OngH. C.. Appl. Phys. Lett., 2001, 78: 16

[27]

ZhangS. B., WeiS. H., ZungerA.. Phys. Rev. B, 2001, 63: 075205

[28]

CaoB. Q., CaiW. P., ZengH. B.. Appl. Phys. Lett., 2006, 88: 161101

AI Summary AI Mindmap
PDF

92

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/