Programmable quantum logic gates using teleportation with non-maximally entangled states

Hui Li , Chun-wen Li , Min Jiang

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (1) : 63 -66.

PDF
Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (1) : 63 -66. DOI: 10.1007/s11801-012-1035-1
Article

Programmable quantum logic gates using teleportation with non-maximally entangled states

Author information +
History +
PDF

Abstract

A scheme is proposed for involving programmable quantum logic gates via teleportation, which is a unique technique in quantum mechanics. In our scheme, considering the inevitable decoherence caused by noisy environment, the quantum states are not maximally entangled. We show the implementation of single qubit quantum gates and controlled-NOT (CNOT) gate, which are universal quantum gates. Hence, any quantum gate can be implemented by using teleportation with non-maximally entangled states. Furthermore, two schemes in differet connections of universal gates are proposed and compared, and our results show the parallel connection outperforms the cascade connection.

Keywords

Unitary Transformation / Quantum Circuit / Quantum Gate / Parallel Connection / Control Qubit

Cite this article

Download citation ▾
Hui Li, Chun-wen Li, Min Jiang. Programmable quantum logic gates using teleportation with non-maximally entangled states. Optoelectronics Letters, 2012, 8(1): 63-66 DOI:10.1007/s11801-012-1035-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shor P W, Algorithm for Quantum Computation: Discrete Logarithms and Factoring, 35 th Annual Symposium on Foundations of Computer Science, 124 (1994).

[2]

LuC. Y., BrowneD. E., YangT., PanJ. W.. Phys. Rev. Lett., 2007, 99: 250504

[3]

GroverL. K.. Phys. Rev. Lett., 1997, 79: 325

[4]

YounesA., RoweJ., MillerJ.. Physica D, 2008, 237: 1074

[5]

NielsonM. A., ChuangI. L.. Phys. Rev. Lett., 1997, 79: 321

[6]

HannekeD., HomeJ. P., JostJ. D., AminiJ. M., LeibfriedD., WinelandD. J.. Nature Physics, 2010, 6: 13

[7]

HilleryM., ZimanM., Bu⊙ekV.. Phys. Rev. A, 2006, 73: 022345

[8]

MièudaM., Je⊙ekM., DušekM., FiurášekJ.. Phys. Rev. A, 2008, 78: 062311

[9]

KubotaS., WatanabeM.. Applied Optics, 2009, 48: 302

[10]

KnillE., LeibfriedD., ReichleR., BrittonJ., BlackestadR. B., JostJ. D., LangerC., OzeriR., SeidelinS., WinelandD. J.. Phys. Rev. A, 2008, 77: 012307

[11]

LaddT. D., JelezkoF., LaflammeR., NakamuraY., MonroeC., O’BrienJ. L.. Nature, 2010, 464: 45

[12]

GottesmanD., ChuangI. L.. Nature, 1999, 402: 390

[13]

SlodièkaL., FiurášekJ., Je⊙ekM.. Phys. Rev. A, 2009, 79: 050304

[14]

Goebel A M, Wagenknecht C, Zhang Q, Chen Y U and Pan J W, Teleportation-Based Controlled-NOT Gate for Fault-Tolerant Quantum Computation, e-print arXiv: 0809, 3583 (2008).

[15]

BarencoA., BennettC. H., CleveR., DiVincenzoD. P., MargolusN., ShorP., SleatorT., SmolinJ. A., WeinfurterH.. Phys. Rev. A, 1995, 52: 3457

[16]

ZimanM., Bu⊙ekV.. Acta Physica Hungarica, 2006, 26: 277

[17]

ChattopadhyayT., BhattacharyyaP.. Optoelectronics Letters, 2011, 7: 186

[18]

LvS. F., MontrossetI., GioanniniM., SongS., MaJ.. Optoelectronics Letters, 2011, 7: 122

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/