Characteristics of tunable micro-cavity based on one-dimensional photonic crystal doping KTP as defect layer

Wen-chao Li, Zheng-jun Liu, Hong-dong Zhao, Xiao-peng Sha, Zhi-quan Li

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (1) : 21-24.

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (1) : 21-24. DOI: 10.1007/s11801-012-1022-6
Article

Characteristics of tunable micro-cavity based on one-dimensional photonic crystal doping KTP as defect layer

Author information +
History +

Abstract

The tunable micro-cavity based on one-dimensional (1D) photonic crystal doped by KTP is designed. The optical transmission properties in the doped one-dimensional defect photonic crystals are analyzed using transfer matrix method (TMM). According to the electro-optic effect, the refractive index ellipsoid equation is established with the applied alternating current at both coordinate axes, and the characteristics of temperature-optics and modulation are studied. Numerical calculations and experimental results show that the tuning range is ∼40 nm.

Keywords

Photonic Crystal / Transfer Matrix Method / Defect Layer / Solid State Communication / Microcavity Laser

Cite this article

Download citation ▾
Wen-chao Li, Zheng-jun Liu, Hong-dong Zhao, Xiao-peng Sha, Zhi-quan Li. Characteristics of tunable micro-cavity based on one-dimensional photonic crystal doping KTP as defect layer. Optoelectronics Letters, 2012, 8(1): 21‒24 https://doi.org/10.1007/s11801-012-1022-6

References

[1]
WangW., CaoX.-y., WangR., ZhouW.-y.. Journal of Optoelectronics Laser, 2009, 20: 52
[2]
ZhangW.-f., LiuJ.-h., ZhaoW.. Journal of Optoelectronics Laser, 2009, 20: 148
[3]
SinghS. K., PandeyJ. P., ThapaK. B., OjhaS.P.. Solid State Communications, 2007, 143: 217
CrossRef Google scholar
[4]
ZhuQ., ZhangY.. Optik-International Journal for Light and Electron Optics, 2009, 120: 195
CrossRef Google scholar
[5]
SrivastavaR., ThapaK. B., PatiS., OjhaS. P.. Solid State Communications, 2008, 147: 157
CrossRef Google scholar
[6]
O’Brien J.D., Bagheri M., Lu L., Yang T., Shih M. H., Mock A. and Dapkus P.D., Photonic Crystal Microcavity Lasers, Transparent Optical Networks, 10 th Anniversary International Conference, 22 (2008).
[7]
WoongK. S., SeokO. S., HoP. J., HaC. E., Seo, HoY., Cho, SupG., ByoungchooP.. Journal of Applied Physics, 2008, 103: 033103
CrossRef Google scholar
[8]
MorifujiM., NakayaY., MitamuraT., KondowM.. Photonics Technology Letters, 2009, 21: 513
CrossRef Google scholar
[9]
SilviaV., FrancescaI., LaurentB., MargheritaZ., FrancescoR., AnnaV., Wiersma DiederikS.. Colocci Marcello, Li Lianhe, Francardi Marco, Gerardino Annamaria, Fiore Andrea and Gurioli MassimoApplied Physics Letters, 2008, 93: 023124
CrossRef Google scholar
[10]
BoucherY. G., ChiaseraA., FerrariM., RighiniG. C.. Optical Materials, 2009, 31: 1306
CrossRef Google scholar
[11]
AmetJ., BaidaF. I., BurrG. W.. Photonics and Nanostructures, 2007, 6: 47
CrossRef Google scholar
[12]
BorduiP. F., JaccoJ. C., LoiaconoG. M.. Crystal Growth, 1987, 84: 403
CrossRef Google scholar
[13]
TongK., CuiW.-w., LiZ.-q.. Chinese Journal of Lasers, 2007, 34: 837

This work has been supported by the National Natural Science Foundation of China (No.60877047), the Natural Science Fund of Hebei Province (Nos. F2008000873 and F2010002002), and the Special Research Fund for the Doctoral Program of Ministry of Education of China (No. 20070216004).

Accesses

Citations

Detail

Sections
Recommended

/