Theoretical study on modulating group velocity of light in photonic crystal coupled cavity optical waveguide

Ying Lu, Xiao-hui Huang, Xiang-yong Fu, Dan-ping Chu, Jian-quan Yao

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (1) : 25-28.

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (1) : 25-28. DOI: 10.1007/s11801-012-0141-4
Article

Theoretical study on modulating group velocity of light in photonic crystal coupled cavity optical waveguide

Author information +
History +

Abstract

We present a novel mechanism,which is formed by periodically changing the radii of dielectric rods in the middle row of a photonic crystal, to control and stop light. Using the Bloch theory and coupled-mode theory, the dispersion characteristic of such a photonic crystal coupled cavity optical waveguide is obtained. We also theoretically demonstrate that the group velocity of a light pulse in this system can be modulated by dynamically changing the refractive index or radii of the selected dielectric rods, and the light stopping can be achieved.

Keywords

Resonant Frequency / Photonic Crystal / Group Velocity / Light Pulse / Couple Mode Theory

Cite this article

Download citation ▾
Ying Lu, Xiao-hui Huang, Xiang-yong Fu, Dan-ping Chu, Jian-quan Yao. Theoretical study on modulating group velocity of light in photonic crystal coupled cavity optical waveguide. Optoelectronics Letters, 2012, 8(1): 25‒28 https://doi.org/10.1007/s11801-012-0141-4

References

[1]
KhurginJ. B.. Adv. Opt. Photon., 2010, 2: 287
CrossRef Google scholar
[2]
Zheng-huaL., Yan-lingX., Ting-genS.. Laser & Infrared, 2008, 38: 3
[3]
BrillouinL.. Wave Propagation and Group Velocity, 1960, New York, Academic Press
[4]
BollerK. J., ImamogluA., HarrisS. E.. Phys. Rev. Lett., 1991, 66: 2593
CrossRef Google scholar
[5]
KasapiA., JainM., YinG. Y., HarrisS. E.. Phys. Rev. Lett., 1995, 74: 2447
CrossRef Google scholar
[6]
HarrisS. E., HauL.V., DuttonZ., BehrooziC. H.. Phys. Rev. Lett., 1999, 82: 4611
CrossRef Google scholar
[7]
KashM. M.. Phys. Rev. Lett., 1999, 82: 5229
CrossRef Google scholar
[8]
YinJ.-c., XiaoX.-c., YangC.-x.. Journal of Optoelectronics Laser, 2010, 21: 786
[9]
LiuC., DuttonZ., BehrooziC. H., HauL. V.. Nature, 2001, 409: 490
CrossRef Google scholar
[10]
PhillipsD. F., FleischhauerA., MairA., Wals-worthR. L., LukinM. D.. Phys. Rev. Lett., 2001, 86: 783
CrossRef Google scholar
[11]
TurukhinA.V.. Phys. Rev. Lett., 2002, 88: 023602
CrossRef Google scholar
[12]
FengS., LiY.-x., AoL., RenC.. Optoelectronics Letters, 2011, 7: 129
CrossRef Google scholar
[13]
NotomiM.. Phys. Rev. Lett., 2001, 87: 253902
CrossRef Google scholar
[14]
StefanouN., ModinosA.. Phys. Rev. B, 1998, 57: 12127
CrossRef Google scholar
[15]
YarivA., XuY., LeeR. K., SchererA.. Opt. Lett., 1999, 24: 711
CrossRef Google scholar
[16]
BayindirM., TemelkuranB., OzbayE.. Phys. Rev. Lett., 2000, 84: 2140
CrossRef Google scholar
[17]
SheS.. Physical Principles of Waveguide Optics, 2002, Beijing, Northern Jiaotong University Press
[18]
YanikM. F., FanS.. Studies Appl. Math., 2005, 115: 233
CrossRef Google scholar
[19]
YanikM. F., FanS.. Phys. Rev. Lett., 2004, 92: 083901
CrossRef Google scholar
[20]
SandhuS., PovinelliM. L., FanS.. Optics Letters, 2007, 32: 3333
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (No.10874128).

Accesses

Citations

Detail

Sections
Recommended

/