Threshold control in VCSELs by proton implanted depth

Hong-dong Zhao , Mei Sun , Wei Wang , Lian-xi Ma , Hui-li Liu , Wen-chao Li , Qi Liu

Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (4) : 263 -265.

PDF
Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (4) : 263 -265. DOI: 10.1007/s11801-011-9246-4
Article

Threshold control in VCSELs by proton implanted depth

Author information +
History +
PDF

Abstract

The proton implantation is one of key procedures to confine the current diffusion in vertical cavity surface emitting lasers (VCSELs), in which the proton implanted depth and profile are main parameters. Threshold characteristics of VCSELs with various proton implanted depths are studied after optical, electrical and thermal fields have been simulated self-consistently in three dimensions. It is found that for VCSELs with confinement radius of 2 μm, increasing proton implanted depth can reduce the injected current threshold power and enhance the laser temperature in active region. Numerical results also indicate that there are optimal values for current aperture in proton implanted VCSELs. The minimum injected current threshold can be achieved in VCSELs with proton implantation near the active region and confinement radius of 1.5 μm, while the VCSELs with proton implantation in the middle of p-type distributed Bragg reflectors (DBRs) and confinement radius of 2.5 μm can realize the minimum temperature.

Keywords

Active Region / Thermal Field / IEEE Journal / Optoelectronic Letter / Threshold Control

Cite this article

Download citation ▾
Hong-dong Zhao, Mei Sun, Wei Wang, Lian-xi Ma, Hui-li Liu, Wen-chao Li, Qi Liu. Threshold control in VCSELs by proton implanted depth. Optoelectronics Letters, 2011, 7(4): 263-265 DOI:10.1007/s11801-011-9246-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

OrtsieferM., GörblichM., XuY., RönnebergE., RosskopfJ., ShauR., AmannM. C.. IEEE Photonics Technology Letters, 2010, 22: 15

[2]

HuY.-s., YeS.-j., WangZ.-f., QinL., NingY.-q.. Optoelectronics Letters, 2010, 6: 421

[3]

GaoJ.. Journal of Lightwave Technology, 2010, 28: 1332

[4]

VerschaffeltG., CraggsG., PeetersM. L. F., MandreS. K., ThienpontH., FischerI.. IEEE Journal of Quantum Electronics, 2009, 45: 249

[5]

LeisherP. O., DannerA. J., RafteryJ. J.Jr, SirianiD., ChoquetteK. D.. IEEE Journal of Quantum Electronics, 2006, 42: 1091

[6]

SafaisiniR., JosephJ. R., LearK. L.. IEEE Journal of Quantum Electronics, 2010, 46: 1590

[7]

ShiJ.-j., TianZ.-h., QinL., ZhangY., WangZ.-f., LiangX.-m., YangY., NingY.-q., LiuY., WangL.-j.. Journal of Optoelectronics · Laser, 2010, 21: 1446

[8]

DebernardiP.. IEEE Journal of Quantum Electronics, 2009, 45: 979

[9]

DyominA. A., LysakV. V., PetrovS. I., LeeY. T., SukhoivanovI. A.. Optics and Lasers in Engineering, 2008, 46: 211

[10]

PiskorskiL., SarzaR. P., NakwaskiW.. Microelectronics Journal, 2008, 39: 638

[11]

ZhangH., MrozynskiG., WallrabensteinA., SchrageJ.. IEEE Journal of Quantum Electronics, 2004, 40: 18

[12]

KaftroudiZ. D., RajaeiE.. Optics Communications, 2011, 284: 330

[13]

ZhaoH.-d., SongD.-y., ZhangZ.-f., SunJ., SunM., WuY., WenX.-r.. Acta Physics Sinica, 2004, 53: 3744

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/