A millimeter-wave WDM-ROF system based on supercontinuum technique

Quan-xin Yuan, Xiao-li Yin, Xiang-jun Xin, Chong-xiu Yu, Yu-lu Chen, Bo Liu

Optoelectronics Letters ›› 2012, Vol. 7 ›› Issue (6) : 440-442.

Optoelectronics Letters ›› 2012, Vol. 7 ›› Issue (6) : 440-442. DOI: 10.1007/s11801-011-1081-0
Article

A millimeter-wave WDM-ROF system based on supercontinuum technique

Author information +
History +

Abstract

In this paper, a new millimeter-wave (mm-wave) wavelength division multiplexing (WDM) system based on radio-over-fiber (ROF) technology is proposed. In this approach a multi-wavelength light source is obtained by supercontinuum (SC) technique, and mm-wave signals are obtained by using optical heterodyning method. We experimentally demonstrate the generation of optical carriers for 6-WDM channels, obtain 40 GHz mm-wave signals by employing optical heterodyne technique, and successfully achieve low error rate transmission of 2.5 Gbit/s in WDM channels over a distance of 25 km in a G.652 fiber. The experimental results verify that the proposed solution is feasible and cost effective.

Keywords

Optical Carrier / Array Waveguide Grating / Optical Heterodyne / Optical Band Pass Filter / Grating Array

Cite this article

Download citation ▾
Quan-xin Yuan, Xiao-li Yin, Xiang-jun Xin, Chong-xiu Yu, Yu-lu Chen, Bo Liu. A millimeter-wave WDM-ROF system based on supercontinuum technique. Optoelectronics Letters, 2012, 7(6): 440‒442 https://doi.org/10.1007/s11801-011-1081-0

References

[1]
ZhangM., YuJ. G., CaoZ. Z., ChenL.. Journal of Optoelectronics · Laser., 2010, 4: 547
[2]
ZhangH., WangW., XiaD., CaoC., CuiH. L., Journal ChangS.. J. of Optoelectronics · Laser., 2010, 11: 1621
[3]
LimC., NirmalathasA., NovakD., WaterhouseR.. J. Lightw. Technol, 2003, 21: 3308
CrossRef Google scholar
[4]
TodaH., YamashitaT., KuriT., KitayamaK.. J. Lightw. Technol, 2003, 21: 1735
CrossRef Google scholar
[5]
H. Toda, T. Yamashita, K. Kitayama and T. Kuri, Proc. Int. Topical Meeting Microwave Photonics (MWP), 287 (2003).
[6]
KuriT., KitayamaK.. IEEE Trans. Microw. Theory Tech, 1996, 32: 2158
[7]
KuriT., KitayamaK.. IEEE Trans, Microw. Theory Tech, 1999, 47: 570
CrossRef Google scholar
[8]
T. Kawanishi, H. Kiuchi, M. Yamada, T. Sakamoto, M. Tsuchiya, J. Amagai and M. Izutsu, MWP, (2005).
[9]
WangY., YuC. Y., LuoT., YanL., PanZ. Q., WillnerA.. J. of Lightwave Technology., 2005, 23: 3331
CrossRef Google scholar
[10]
G. P. Agrawal. Nonlinear Fiber Optics & Application of Nonlinear Fiber Optics 32, (2001).
[11]
LouC. Y., GaoY. Z., WangJ. P., HanM., WuY.. Tsinghua Univ(Sci&Tech), 2003, 43: 441

This work has been supported by the Fundamental Research Funds for the Central Universities (No.2009RC0314), the National Natural Science Foundation of China (Nos.60932004, 61077050 and 61077014), the National Basic Research Program of China (No.2010CB328300), and the Open Foundation of State Key laboratory of Optical Communication Technologies and Networks (WRI) (No.2010OCTN-02).

Accesses

Citations

Detail

Sections
Recommended

/