Angular tuning of defect modes spectra for one dimensional photonic crystal filters with a liquid crystal layer

Jie He, Li-tao Song, Hua-lei Wang, Yi-ang Han, Tao Li

Optoelectronics Letters ›› 2012, Vol. 7 ›› Issue (6) : 437-439.

Optoelectronics Letters ›› 2012, Vol. 7 ›› Issue (6) : 437-439. DOI: 10.1007/s11801-011-1077-9
Article

Angular tuning of defect modes spectra for one dimensional photonic crystal filters with a liquid crystal layer

Author information +
History +

Abstract

A tunable photonic crystal filter with a twisted nematic liquid crystal layer is proposed. The defect modes spectra with varying incident angles are discussed in detail by 4×4 matrix method. The results show that the defect modes are mainly decided by the applied voltage when the incident angle is smaller than 8°. As the incident angle further increases, the band gap and the defect modes shift toward the shorter wavelength side, and the changes of the two modes are different. In the lower voltage range, the defect modes can be tuned not only by the applied voltage but also by the incident angle. In the higher voltage range, the defect modes can be further tuned by varying incident angle and the different modes can be separated from each other by a big incident angle.

Keywords

Incident Angle / Defect Mode / Defect Layer / Short Wavelength Side / Incident Angle Increase

Cite this article

Download citation ▾
Jie He, Li-tao Song, Hua-lei Wang, Yi-ang Han, Tao Li. Angular tuning of defect modes spectra for one dimensional photonic crystal filters with a liquid crystal layer. Optoelectronics Letters, 2012, 7(6): 437‒439 https://doi.org/10.1007/s11801-011-1077-9

References

[1]
HaleviP., Ramos-MendietaF.. Phys. Rev. Lett., 2000, 85: 1875
CrossRef Google scholar
[2]
KeeC. S., KimJ. E., ParkH. Y.. Phys. Rev. E., 1998, 57: 2327
CrossRef Google scholar
[3]
BushK., JohnS.. Phys. Rev. Lett., 1999, 83: 967
CrossRef Google scholar
[4]
HouS. L., HanJ. W., ZhangR. R., HuangY. Q., ZhangX., RenX. M.. Journal of Optoelectronics · Laser, 2010, 21: 6
[5]
ZhangH., BaiJ. J., GuoP., WangX. H., ChangS. J.. Optoelectronics Letters, 2009, 5: 0169
CrossRef Google scholar
[6]
TolmachevV. A., PerovaT. S., GrudinkinS. A., MelnikovV. A., AstrovaE. V., ZharovaY. A.. Appl. Phys. Lett., 2007, 90: 011908
CrossRef Google scholar
[7]
IgnacioD. V., IgnacioR. M., FranciscoJ. A.. Opt. Express., 2003, 11: 430
CrossRef Google scholar
[8]
CosJ., Ferre-BorrullJ., PallaresJ., MarsalL. F.. Opt. Commun., 2009, 282: 1220
CrossRef Google scholar
[9]
HaY. K., YangY. C., KimJ. E., ParkH. Y.. Appl. Phys. Lett., 2001, 79: 15
CrossRef Google scholar
[10]
SongL. T., HeJ., WangH. L., HanY. A., LiT.. Chinese J. Lasers, 2010, 37: 2834
CrossRef Google scholar
[11]
HeJ., SongL. T., WangH. L., HanY. A., LiT.. Optoelectronics Letters, 2010, 6: 0432
CrossRef Google scholar
[12]
LiuY. Z., YangK. Y.. Liquid Crystal Display Technology, 2000, Chengdu, The University of Electronic Science and Technology Press
[13]
HuangY. H., ThomasX. W., Shin-TsonW.. J. Appl. Phys., 2003, 93: 2490
CrossRef Google scholar
[14]
WangQ., HeS. L., YuF. H., HuangN. R.. Opt. Eng., 2001, 40: 2552
CrossRef Google scholar
[15]
JonesR. C.. J. Opt. Soc. Am., 1941, 31: 488
CrossRef Google scholar
[16]
YehP.. J. Opt. Soc. Am., 1982, 72: 507
CrossRef Google scholar
[17]
BerremanD. W.. J. Opt. Soc. Am., 1972, 62: 502
CrossRef Google scholar
[18]
YangK. H.. J. Appl. Phys., 1990, 68: 1550
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (No.10805040), and the Talent Introduction Program of Henan University of Technology (No.2007BS041).

Accesses

Citations

Detail

Sections
Recommended

/