Performance study of an OFDM visible light communication system based on white LED array

Chong-wen Tian , Yan-ting Li , Wei-lin Ye , Xiang-yin Quan , Zhanwei Song , Chuan-tao Zheng

Optoelectronics Letters ›› 2012, Vol. 7 ›› Issue (6) : 454 -457.

PDF
Optoelectronics Letters ›› 2012, Vol. 7 ›› Issue (6) : 454 -457. DOI: 10.1007/s11801-011-1075-y
Article

Performance study of an OFDM visible light communication system based on white LED array

Author information +
History +
PDF

Abstract

By introducing orthogonal frequency division multiplexing (OFDM) technology, a visible light communication (VLC) system using a 5×5 white LED array is studied in this paper. The OFDM transmitter and receiver are modeled through MATLAB/Simulink tool. The electrical-optical-electrical (EOE) response of the VLC channel, which is also the response of the detector, is derived based on Lambert’s lighting model. Then the modeling on the overall OFDM/VLC system is established by combining the above three models together. The effects of the factors which include the digital modulation, Reed-Solomon (RS) coding, pilot form, pilot ratio (PR) and communication distance on the bit error rate (BER) of the system are discussed. The results show that through the use of RS coding, block pilot, quadrate phase shift keying (QPSK) modulation and a suitable pilot ratio about 1/3, under the communication rate about 550 kbit/s, the BER can be dropped to below 10–5, and the communication distance can reach 0.9 m.

Keywords

Orthogonal Frequency Division Multi / Communication Distance / Visible Light Communication / Inverse Discrete Fourier Transformation / Lead Array

Cite this article

Download citation ▾
Chong-wen Tian, Yan-ting Li, Wei-lin Ye, Xiang-yin Quan, Zhanwei Song, Chuan-tao Zheng. Performance study of an OFDM visible light communication system based on white LED array. Optoelectronics Letters, 2012, 7(6): 454-457 DOI:10.1007/s11801-011-1075-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

WangZ. J., LiP. L., YangZ. P., GuoQ. L.. J. Optoelectronics · Laser, 2011, 22: 718

[2]

ZhouL. Z., LiuH., AnB., WuF. S., WuY. P.. J. Optoelectronics · Laser, 2010, 21: 175

[3]

TanakaY., HaruyamaS., NakagawaM.. the 11th IEEE International Symposium on Personal Indoor and Mobile Radio Communications, 2000, 2: 1325

[4]

KomineT., NakagawaM.. IEEE Trans. on Consumer Electronics, 2003, 49: 71

[5]

KomineT., NakagawaM.. IEEE Trans. on Consumer Electronics, 2004, 50: 100

[6]

H. C. N. Premachandra, T. Yendo, T. Yamasato, T. Fujii, M. Tanimoto and Y. Kimura, 2009 IEEE Intelligent Vehicles Symposium, 179 (2009).

[7]

K. D. Langer, J. Vuèiæ, C. Kottke, L. F. del Rosal, S. Nerreter and J. Walewski, Proc. ICTON Paper Mo.B5.3, (2009).

[8]

Le MinhH., O’BrienD., FaulknerG., ZengL., LeeK., JungD., OhY., WonE.T.. IEEE Photon. Technol. Lett., 2009, 21: 1063

[9]

KwonJ. K.. IEEE Photon. Technol. Lett., 2010, 22: 1455

[10]

VucicJ., KottkeC., NerreterS., HabelK., BuettnerA., LangerK.-D., WalewskiJ. W.. J. Lightwave Technol., 2010, 28: 3512

[11]

GruborJ., LangerK.-D.. J. Netw., 2010, 5: 197

[12]

H. Elgala, R. Mesleh, H. Haas, and B. Pricope, IEEE 65thVehicular Technology Conference, 2185 (2007).

[13]

CarruthersJ. B., KannanP.. IEEE Transactions on Antennas and Propagation, 2002, 50: 759

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/