Characterization of sputtered ZnO films under different sputter-etching time of substrate

Cui-ping Li , Bao-he Yang , Li-rong Qian , Sheng Xu , Wei Dai , Ming-ji Li , Xiao-wei Li , Cheng-yao Gao

Optoelectronics Letters ›› 2012, Vol. 7 ›› Issue (6) : 431 -436.

PDF
Optoelectronics Letters ›› 2012, Vol. 7 ›› Issue (6) : 431 -436. DOI: 10.1007/s11801-011-1066-z
Article

Characterization of sputtered ZnO films under different sputter-etching time of substrate

Author information +
History +
PDF

Abstract

Polycrystalline ZnO films are prepared using radio frequency magnetron sputtering on glass substrates which are sputteretched for different time. Both the size of ZnO grains and the root-mean-square (RMS) roughness decrease, as the sputteretching time of the substrate increases. More Zn atoms are bound to O atoms in the films, and the defect concentration is decreased with increasing sputter-etching time of substrate. Meanwhile, the crystallinity and c-axis orientation are improved at longer sputter-etching time of the substrate. The Raman peaks at 99 cm−1, 438 cm−1 and 589 cm−1 are identified as E2(low), E2(high) and E1(LO) modes, respectively, and the position of E1(LO) peak blue shifts at longer sputter-etching time. The transmittances of the films, which are deposited on the substrate and etched for 10 min and 20 min, are higher in the visible region than that of the films deposited under longer sputter-etching time of 30 min. The bandgap increases from 3.23 eV to 3.27 eV with the increase of the sputter-etching time of substrate.

Keywords

Glass Substrate / Resistive Random Access Memory / Radio Frequency Magnetron / Bare Glass / Roughness Decrease

Cite this article

Download citation ▾
Cui-ping Li, Bao-he Yang, Li-rong Qian, Sheng Xu, Wei Dai, Ming-ji Li, Xiao-wei Li, Cheng-yao Gao. Characterization of sputtered ZnO films under different sputter-etching time of substrate. Optoelectronics Letters, 2012, 7(6): 431-436 DOI:10.1007/s11801-011-1066-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LookD. C.. Mat. Sci. Eng. B-Solid, 2001, 80: 383

[2]

OzgurU., AlivovY. I., LiuC., TekeA., ReshchikovM. A., DoganS., AvrutinV., ChoS. J., MorkocH.. J. Appl. Phys., 2005, 98: 041301

[3]

PeartonS. J., NortonD. P., IpK., HeoY. W., SteinerT.. Prog. Mater. Sci, 2005, 50: 293

[4]

TsukazakiA., OhtomoA., OnumaT., OhtaniM., MakinoT., SumiyaM., OhtaniK., ChichibuS. F., FukeS., SegawaY., OhnoH., KoinumaH., KawasakiM.. Nat. Mater., 2005, 4: 42

[5]

LimJ. H., KangC. K., KimK. K., ParkI. K., HwangD. K., ParkS. J.. Adv. Mater., 2006, 18: 2720

[6]

LookD. C., ClaftinB.. Phys. Status Solidi A, 2004, 241: 624

[7]

FukumuraT., JinZ. W., OhtomoA., KoinumaH., KawasakiM.. Appl. Phys. Lett., 1999, 75: 3366

[8]

LiuC., YunF., MorkocH.. J. Mater. Sci.-Mater. El., 2005, 16: 555

[9]

PanF., SongC., LiuX. J., YangY. C., ZengF.. Mater. Sci. Eng. R-Rep., 2008, 62: 1

[10]

ChangW. Y., LaiY. C., WuT. B., WangS. F., ChenF., TsaiM. J.. Appl. Phys. Lett., 2008, 92: 022110

[11]

ShihA., ZhouW. D., QiuJ., YangH. J., ChenS. Y., MiZ. T., ShihI.. Nanotechnology, 2010, 21: 125201

[12]

LuoJ. T., ZengF., PanF., LiH. F., NiuJ. B., JiaR., LiuM.. Appl. Surf. Sci., 2010, 256: 3081

[13]

VerardiP., NastaseN., GherasimC., GhicaC., DinescuM., DinuR., FlueraruC.. J. Cryst. Growth, 1999, 197: 523

[14]

YanagitaniT., KiuchiM., MatsukawaM., WatanabeY.. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2007, 54: 1680

[15]

KimK. K., SongJ. H., JungH. J., ChoiW. K., ParkS. J., SongJ. H.. J. Appl. Phys., 2000, 87: 3573

[16]

WaterW., ChuS. Y.. Mater. Lett., 2002, 55: 67

[17]

TangI. T., WangY. C., HwangW. C., HwangC. C., WuN. C., HoungM. P., WangY. H.. J. Cryst. Growth, 2003, 252: 190

[18]

JeongS. H., BooJ. H.. Thin Solid Films, 2004, 447: 105

[19]

LiuH. F., ChuaS. J., HuG. X., GongH., XiangN.. J. Appl. Phys., 2007, 102: 083529

[20]

PrepelitaP., MedianuR., SbarceaB., GaroiF., FilipescuM.. Appl. Surf. Sci., 2010, 256: 1807

[21]

YoshinoY., InoueK., TakeuchiM., MakinoT., KatayamaY., HataT.. Vacuum, 2000, 59: 403

[22]

MakinoH., KishimotoS., YamadaT., MiyakeA., YamamotoN., YamamotoT.. Phys. Status Solidi A, 2008, 205: 1971

[23]

MagneeP. H. C., DenhartogS. G., VanweesB. J., KlapwijkT. M., VandegraafW., BorghsG.. Appl. Phys. Lett., 1995, 67: 3569

[24]

IgarashiS., KatsumataT., HaraguchiM., SaitoT., YamaguchiK., YamamotoH., HojouK.. Vacuum, 2004, 74: 619

[25]

KimY. H., LeeK. S., LeeT. S., CheongB., SeongT. Y., KimW. M.. Appl. Surf. Sci., 2009, 255: 7251

[26]

HsuC. W., ChengT. C., YangC. H., ShenY. L., WuJ. S., WuS. Y.. J. Alloy. Compd., 2011, 509: 1774

[27]

SharmaB. K., KhareN.. J. Phys. D Appl. Phys., 2010, 43: 465402

[28]

DamenT. C., PortoS. P. S., TellB.. Phys. Rev., 1966, 142: 570

[29]

BergmanL., ChenX. B., HusoJ., MorrisonJ. L., HoeckH.. J. Appl. Phys., 2005, 98: 093507

[30]

AshkenovN., MbenkumB. N., BundesmannC., RiedeV., LorenzM., SpemannD., KaidashevE. M., KasicA., SchubertM., GrundmannM., WagnerG., NeumannH., DarakchievaV., ArwinH., MonemarB.. J. Appl. Phys., 2003, 93: 126

[31]

CuscoR., Alarcon-LladoE., IbanezJ., ArtusL., JimenezJ., WangB. G., CallahanM. J.. Phys. Rev. B, 2007, 75: 165202

[32]

XuC. X., SunX. W., ZhangX. H., KeL., ChuaS. J.. Nanotechnology, 2004, 15: 856

[33]

SarkarA., GhoshS., ChaudhuriS., PalA. K.. Thin Solid Films, 1991, 204: 255

[34]

SwanepoelR.. J. Phys. E: Sci. Instrum., 1983, 16: 1214

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/