An air-stable inverted photovoltaic device using ZnO as the electron selective layer and MoO3 as the blocking layer

Peng-fei Song , Wen-jing Qin , Guo-jing Ding , Qi-qi Yan , Li-ying Yang , Shou-gen Yin

Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (5) : 330 -333.

PDF
Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (5) : 330 -333. DOI: 10.1007/s11801-011-1061-4
Article

An air-stable inverted photovoltaic device using ZnO as the electron selective layer and MoO3 as the blocking layer

Author information +
History +
PDF

Abstract

An air-stable photovoltaic device based on znic oxide nanoparticles (ZNP) in an inverted structure of indium tin oxide (ITO)/ZnO/poly (3-hexylthiophene) (P3HT): [6,6]-phenyl C61-butyric acid methyl ester (PCBM)/MoO3/Ag is studied. We find that the optimum thickness of the MoO3 layer is 2 nm. When the MoO3 blocking layer is introduced, the fill factor of the devices is increased from 29% to 40%, the power conversion efficiency is directly promoted from 0.35% to 1.27%. The stability under ambient conditions of this inverted structure device much is better due to the improved stability at the polymer/Ag interface. The enhancement is attributed to the high carriers mobility and suitable band gap of MoO3 layer.

Keywords

Power Conversion Efficiency / Apply Physic Letter / Blocking Layer / High Hole Mobility / Inverted Device

Cite this article

Download citation ▾
Peng-fei Song, Wen-jing Qin, Guo-jing Ding, Qi-qi Yan, Li-ying Yang, Shou-gen Yin. An air-stable inverted photovoltaic device using ZnO as the electron selective layer and MoO3 as the blocking layer. Optoelectronics Letters, 2011, 7(5): 330-333 DOI:10.1007/s11801-011-1061-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BrabecC. J., SariciftciN. S., HummelenJ. C.. Advanced Functional Materials, 2001, 11: 15

[2]

ShaheenS. E., GinleyD. S., JabbourG. E.. MRS Bull, 2005, 30: 10

[3]

LiG., ShrotriyaV., HuangJ., YaoY., MoriartyT., EmeryK., YangY.. Nature Materials, 2005, 4: 864

[4]

MoulA. J., MeerholzK.. Advanced Materials, 2008, 20: 240

[5]

ThompsonB.. Chem., Int. Ed., 2008, 47(1): 58-77

[6]

WangZ. Q., WuX. M., JingN., WeiJ., YinS. G.. Optoelectronics Letters, 2009, 5: 173

[7]

HuangJ., LiG., YangY.. Adv. Mater., 2008, 20: 415

[8]

LimY. F., LeeS., HermanD. J., LloydM. T., AnthonyJ. E., MalliarasG. G.. Applied Physics Letters, 2008, 93: 193301

[9]

MingW. W., WooB. K., TianZ., ZhangW. L.. Optoelectronics Leffers, 2009, 5: 430

[10]

XuZ., ChenL. M., YangG., HuangC. H., HouJ., WuY., LiG., HsuC. S., YangY.. Advanced Functional Materials, 2009, 19: 1227

[11]

WaldaufC., MoranaM., DenkP., SchilinskyP., CoakleyK., ChoulisS., BrabecC.. Applied Physics Letters, 2006, 89: 233517

[12]

HuZ., LiS., ZhangC.. Journal of Applied Polymer Sci ence, 2007, 106: 2494

[13]

KyawA., SunX., JiangC., LoG., ZhaoD., KwongD.. Applied Physics Letters, 2008, 93: 221107

[14]

CaiW., GongX., CaoY.. Solar Energy Materials and Solar Cells, 2010, 94: 114

[15]

ZhaoD., TanS., KeL., LiuP., KyawA., SunX., LoG., KwongD.. Solar Energy Materials and Solar Cells, 2010, 94: 985

[16]

SekineN., ChouC. H., KwanW. L., YangY.. Organic Electronics, 2009, 10: 1473

[17]

ShirlandF. A.. Advanced Energy Conversion, 2006, 6: 201

[18]

WangM., LiY., HuangH., PetersonE. D., NieW., ZhouW., ZengW., HuangW., FangG., SunN.. Applied Physics Letters, 2011, 98: 103305

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/