High damage threshold HfO2/SiO2 multilayer mirrors deposited by novel remote plasma sputtering

Ying Xu, Nan Chen, Yi-kun Bu

Optoelectronics Letters ›› 2012, Vol. 7 ›› Issue (6) : 405-409.

Optoelectronics Letters ›› 2012, Vol. 7 ›› Issue (6) : 405-409. DOI: 10.1007/s11801-011-1058-z
Article

High damage threshold HfO2/SiO2 multilayer mirrors deposited by novel remote plasma sputtering

Author information +
History +

Abstract

Sputtering deposition coatings offer significant advantages on electron beam (EB) deposition, including high packing density, environmental stability and extremely low losses. But the inherent high compressive stress affects its application in high power laser system. This paper describes the technical feasibility of high damage threshold laser mirrors deposited by a novel remote plasma sputtering technique. This technique is based on generating intensive plasma remotely from the target and then magnetically steering the plasma to the target to realize the full uniform sputtering. The pseudo-independence between target voltage and target current provides us very flexible parameters tuning, especially for the films stress control. Deposition conditions are optimized to yield fully oxidized and low compressive stress single layer HfO2 and SiO2. The high damage threshold of 43.8 J/cm2 for HfO2/SiO2 laser mirrors at 1064 nm is obtained. For the first time the remote plasma sputtering is successfully applied in depositing laser mirrors with high performance.

Keywords

Damage Threshold / Damage Morphology / Remote Plasma / High Damage Threshold / Laser Mirror

Cite this article

Download citation ▾
Ying Xu, Nan Chen, Yi-kun Bu. High damage threshold HfO2/SiO2 multilayer mirrors deposited by novel remote plasma sputtering. Optoelectronics Letters, 2012, 7(6): 405‒409 https://doi.org/10.1007/s11801-011-1058-z

References

[1]
LiB., CuiH.-x., DingX., XuD.-g., YaoJ., ZhangF.. Journal of Optoelectronics · Laser, 2010, 21: 1283
[2]
GaoL.-y., XuZ., SunQ.-j.. Journal of Optoelectronics · Laser., 2009, 20: 874
[3]
StolzC. J., SheehanL. M., GuntenM. K., BevisR. P., SmithD.. Proc. SPIE, 1999, 3338: 218
[4]
ThielschR., GattoA., HeberJ., KaiserN.. Thin Solid Films, 2002, 410: 86
CrossRef Google scholar
[5]
LeeC. C., HsuJ. C., WongD. H.. Opt. and Quan. Elect., 2000, 32: 327
CrossRef Google scholar
[6]
LeeC. C., TienC. L., HsuJ. C.. Appl. Opt., 2002, 41: 2043
CrossRef Google scholar
[7]
HuangJ. B., TianG. L., ShaoJ. D., FanZ. X.. Chin. Opt. Lett., 2005, 13: 676
[8]
M. J. Thwaites, UK Patent GB 2 343 992 B: High Density Plasma (2001).
[9]
VopsaroiuM., Vallejo FernandezG., ThwaitesM. J., AnguitaJ., GrundyP. J.. J. Phys. D: Appl. Phys., 2005, 38: 490
CrossRef Google scholar
[10]
MeroM., LiuJ., SabbahA., JasaparaJ., StarkeK., RistauD., MciverJ., RudolphW.. Proc. SPIE, 2003, 4932: 202
CrossRef Google scholar
[11]
GallaisL., CapouladeJ., NatoliJ. Y., CommandrM., CathelinaudM., KocC., LequimeM.. Appl. Opt., 2008, 47: C107
CrossRef Google scholar
[12]
GallaisL., KrolH., NatoliJ. Y., CommandrM., CathelinaudM., RousselL., LequimeM., AmraC.. Thin Solid Films, 2007, 515: 3830
CrossRef Google scholar
[13]
SwanepoelR.. J. Phys. E: Sci. Instrum., 1983, 16: 1214
CrossRef Google scholar
[14]
StoneyG. G.. Proceedings of the Royal Society (London), 1909, A82: 172
[15]
CetinorgE., BaloukasB., ZabeidaO., Klemberg-SapiehaJ. E., MartinuL.. Appl. Opt., 2009, 48: 4536
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (No. 50802080) and the Natural Science Foundation of Fujian Province of China (No.2010Jo1349).

Accesses

Citations

Detail

Sections
Recommended

/