Light intensity at the return place and encirclement power ratio for the distorted reflected beambased oncat-eye effect

Yan-zhong Zhao, Hua-yan Sun, Lai-xian Zhang, Yong-hui Zheng

Optoelectronics Letters ›› 2012, Vol. 7 ›› Issue (6) : 478-482.

Optoelectronics Letters ›› 2012, Vol. 7 ›› Issue (6) : 478-482. DOI: 10.1007/s11801-011-1055-2
Article

Light intensity at the return place and encirclement power ratio for the distorted reflected beambased oncat-eye effect

Author information +
History +

Abstract

Based on the definition of second order moment and the approximate three-dimensional analytical formula for probe detected laser beam passing through a cat-eye optical lens with center shelter and oblique detector, the analytical expression of the encirclement power ratio of the cat-eye effect reflected light under far-field condition has been deduced. Variable laws of light intensity at the return place and encirclement power ratio are performed by numerical calculation, and are analyzed physically. The results show that the light intensity at the return place decreases monotonically with the increases of the diameter, incidence angle, tilted angle of the detector and the center shelter ratio, but the relationships between these parameters and the encirclement power ratio are all nonmonotonic. The reasonable choice of the focal shift size would result in the largest light intensity at the return place and the largest erirclenent power ratio.

Keywords

Light Intensity / Incidence Angle / Tilted Angle / Order Moment / Power Ratio

Cite this article

Download citation ▾
Yan-zhong Zhao, Hua-yan Sun, Lai-xian Zhang, Yong-hui Zheng. Light intensity at the return place and encirclement power ratio for the distorted reflected beambased oncat-eye effect. Optoelectronics Letters, 2012, 7(6): 478‒482 https://doi.org/10.1007/s11801-011-1055-2

References

[1]
GoetzP. G., RabinovichW. S., BinariS. C., MitterederJ. A.. IEEE Photon. Technol. Lett., 2006, 18: 2278
CrossRef Google scholar
[2]
XuZ. G., ZhangS. L., DuW. H., LiY.. Opt. Commun., 2006, 265: 70
[3]
XuZ. G., ZhangS. L., LiY., DuW. H.. Opt. Express, 2005, 13: 5565
CrossRef Google scholar
[4]
LinY. B., ZhangG. X., LiZ.. Meas. Sci. Technol., 2003, 14: 36
CrossRef Google scholar
[5]
ChenH., TanJ. B.. J. Optoelectronics · Laser., 2006, 27: 986
[6]
LecocqC., DeshorsG., Lado-bordowskyO., MeyzonnetteJ. L., J. L.. SPIE, 2003, 5086: 280
CrossRef Google scholar
[7]
ZhaoY. Z., SongF. H., SunH. Y., ZhangX., GuoH. C., XuJ. W.. Chin. J. Lasers, 2008, 35: 1149
CrossRef Google scholar
[8]
ZhaoY. Z., SunH. Y., ZhaoL. F., HuangC. G.. Chin. J. Lasers, 2010, 37: 2537
CrossRef Google scholar
[9]
QinK., HanS. K., LiuJ. H.. Optical Technique, 2010, 36: 391
[10]
ZhaoY. Z., SunH. Y., SongF. H., DaiD. D.. Optik, 2010, 121: 2198
CrossRef Google scholar
[11]
ZhaoY. Z., SunH. Y., YuX. Q., FanM. S.. Chin. Phys. Lett., 2010, 27: 034101
CrossRef Google scholar
[12]
LiJ. C., PengZ. J., ChenJ. B.. Optoelectronics · Letters, 2006, 2: 379
CrossRef Google scholar
[13]
ShenX. J., HenY. D., WangL., ShenH. B., MaoS. J., WangY. K.. J. Optoelectronics·laser, 2010, 21: 1106
[14]
TangB., JiangX. F., LiuZ. M.. Optoelectronics Letters, 2008, 4: 78
CrossRef Google scholar
[15]
ZhangW. C., ZhaoD. M., WangS. M.. J. Optoelectronics · laser., 2004, 25: 230

Accesses

Citations

Detail

Sections
Recommended

/