Light intensity at the return place and encirclement power ratio for the distorted reflected beambased oncat-eye effect

Yan-zhong Zhao , Hua-yan Sun , Lai-xian Zhang , Yong-hui Zheng

Optoelectronics Letters ›› 2012, Vol. 7 ›› Issue (6) : 478 -482.

PDF
Optoelectronics Letters ›› 2012, Vol. 7 ›› Issue (6) : 478 -482. DOI: 10.1007/s11801-011-1055-2
Article

Light intensity at the return place and encirclement power ratio for the distorted reflected beambased oncat-eye effect

Author information +
History +
PDF

Abstract

Based on the definition of second order moment and the approximate three-dimensional analytical formula for probe detected laser beam passing through a cat-eye optical lens with center shelter and oblique detector, the analytical expression of the encirclement power ratio of the cat-eye effect reflected light under far-field condition has been deduced. Variable laws of light intensity at the return place and encirclement power ratio are performed by numerical calculation, and are analyzed physically. The results show that the light intensity at the return place decreases monotonically with the increases of the diameter, incidence angle, tilted angle of the detector and the center shelter ratio, but the relationships between these parameters and the encirclement power ratio are all nonmonotonic. The reasonable choice of the focal shift size would result in the largest light intensity at the return place and the largest erirclenent power ratio.

Keywords

Light Intensity / Incidence Angle / Tilted Angle / Order Moment / Power Ratio

Cite this article

Download citation ▾
Yan-zhong Zhao, Hua-yan Sun, Lai-xian Zhang, Yong-hui Zheng. Light intensity at the return place and encirclement power ratio for the distorted reflected beambased oncat-eye effect. Optoelectronics Letters, 2012, 7(6): 478-482 DOI:10.1007/s11801-011-1055-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

GoetzP. G., RabinovichW. S., BinariS. C., MitterederJ. A.. IEEE Photon. Technol. Lett., 2006, 18: 2278

[2]

XuZ. G., ZhangS. L., DuW. H., LiY.. Opt. Commun., 2006, 265: 70

[3]

XuZ. G., ZhangS. L., LiY., DuW. H.. Opt. Express, 2005, 13: 5565

[4]

LinY. B., ZhangG. X., LiZ.. Meas. Sci. Technol., 2003, 14: 36

[5]

ChenH., TanJ. B.. J. Optoelectronics · Laser., 2006, 27: 986

[6]

LecocqC., DeshorsG., Lado-bordowskyO., MeyzonnetteJ. L., J. L.. SPIE, 2003, 5086: 280

[7]

ZhaoY. Z., SongF. H., SunH. Y., ZhangX., GuoH. C., XuJ. W.. Chin. J. Lasers, 2008, 35: 1149

[8]

ZhaoY. Z., SunH. Y., ZhaoL. F., HuangC. G.. Chin. J. Lasers, 2010, 37: 2537

[9]

QinK., HanS. K., LiuJ. H.. Optical Technique, 2010, 36: 391

[10]

ZhaoY. Z., SunH. Y., SongF. H., DaiD. D.. Optik, 2010, 121: 2198

[11]

ZhaoY. Z., SunH. Y., YuX. Q., FanM. S.. Chin. Phys. Lett., 2010, 27: 034101

[12]

LiJ. C., PengZ. J., ChenJ. B.. Optoelectronics · Letters, 2006, 2: 379

[13]

ShenX. J., HenY. D., WangL., ShenH. B., MaoS. J., WangY. K.. J. Optoelectronics·laser, 2010, 21: 1106

[14]

TangB., JiangX. F., LiuZ. M.. Optoelectronics Letters, 2008, 4: 78

[15]

ZhangW. C., ZhaoD. M., WangS. M.. J. Optoelectronics · laser., 2004, 25: 230

AI Summary AI Mindmap
PDF

151

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/