Time distribution characteristics of cat-eye reflected light from moving optical target

Yan-zhong Zhao, Hua-yan Sun, Yong-hui Zheng, Lai-xian Zhang

Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (5) : 397-400.

Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (5) : 397-400. DOI: 10.1007/s11801-011-1054-3
Article

Time distribution characteristics of cat-eye reflected light from moving optical target

Author information +
History +

Abstract

By using the Collins diffraction formula and expanding the aperture function into a finite sum of complex Gaussian functions, an analytical formula of the time light intensity distribution for oblique Gaussian beams passing through a moving cat-eye optical lens and going back along the entrance way is deduced. By numerical computation, the variation laws of the time intensity distributions of the cat-eye reflected light with the viewing angle, imaging distance, aperture and instantaneous field of view are given. The results show that the relationship between the light intensity at the return place and the detection time is linear, and it is of inverse proportion only when the viewing angle is very large. For the staring imaging optical lens, the nonlinear extent of the time distribution curve becomes larger with the decrease of the viewing angle. For the instantaneous imaging optical lens, there is still some cat-eye reflected light when the detection system is out of the viewing field of the target lens.

Keywords

Imaging Distance / Optical Lens / Optoelectronic Letter / Instantaneous Field / Focal Shift

Cite this article

Download citation ▾
Yan-zhong Zhao, Hua-yan Sun, Yong-hui Zheng, Lai-xian Zhang. Time distribution characteristics of cat-eye reflected light from moving optical target. Optoelectronics Letters, 2011, 7(5): 397‒400 https://doi.org/10.1007/s11801-011-1054-3

References

[1]
LecocqC., DeshorsG., Lado-bordowskyO., MeyzonnetteJ. L.. SPIE, 2003, 5086: 280
CrossRef Google scholar
[2]
ZhaoY. Z., SunH. Y., YuX. Q., FanM. S.. Chin. Phy. Lett., 2010, 27: 034101
CrossRef Google scholar
[3]
ZhaoY. Z., SunH. Y., SongF. H.. Chin. Phys. B, 2011, 20: 044201
CrossRef Google scholar
[4]
MieremetA. L., SchleijpenR. M. A., PuttenF. J. M., VeermanH.. Opt. Eng., 2010, 49: 043202
CrossRef Google scholar
[5]
ZhaoY. Z., SunH. Y., SongF. H., DaiD. D.. Optik, 2010, 121: 2198
CrossRef Google scholar
[6]
ZhaoY. Z., SunH. Y., SongF. H., TangL. M., WuW. W., ZhangX., GuoH. C.. Acta Phys. Sin., 2008, 57: 2284
[7]
QinK., HanS. K., LiuJ. H.. Optical Technique, 2010, 36: 391
[8]
ZhaoY. Z., SunH. Y., ZhaoL. F., HuangC. G.. Chin. J. Lasers, 2010, 37: 2537
CrossRef Google scholar
[9]
VergnolleJ. F.. SPIE, 2007, 6738: 67380I
CrossRef Google scholar
[10]
ThollH. D., VergnolleJ. F.. SPIE, 2008, 7115: 711509
CrossRef Google scholar
[11]
LiJ. C., PengZ. J., ChenJ. B.. Optoelectronics Letters, 2006, 2: 379
CrossRef Google scholar
[12]
TangB., JiangX. F., LiuZ. M.. Optoelectronics Letters, 2008, 4: 78
CrossRef Google scholar
[13]
ShenX. J., HenY. D., WangL., ShenH. B., MaoS. J., WangY. K.. J. Optoelectronics laser, 2010, 21: 1106
[14]
ChenS. H., ZhangT. R., FengX. F.. Opt. Commun., 2009, 282: 1083
CrossRef Google scholar
[15]
ZhangW. C., ZhaoD. M., WangS. M.. J. Optoelec tronics Laser, 2004, 25: 230

Accesses

Citations

Detail

Sections
Recommended

/