Tunneling properties of electromagnetic wave in slab superconducting material

Khem B. Thapa , Sanjay Srivastava , Alka Vishwakarma , S. P. Ojha

Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (4) : 277 -281.

PDF
Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (4) : 277 -281. DOI: 10.1007/s11801-011-1043-6
Article

Tunneling properties of electromagnetic wave in slab superconducting material

Author information +
History +
PDF

Abstract

When the electromagnetic wave propagates through a slab superconducting material in microwave ranges, tunneling properties of the electromagnetic wave at critical temperature are investigated theoretically. The transmittance and the reflectance of the slab superconducting material vary with the thickness of material as well as the refractive index of substrates. The high transmittance is found for thin superconductor at low wavelength region. However, optical properties are strongly dependent upon temperature and incidence wavelength. The electromagnetic wave is totally transmitted without loss for incidence wavelength (λ = 5000 nm) due to the zero refractive index and infinite penetration depth of the superconductor at the critical temperature.

Keywords

Refractive Index / Critical Temperature / Electromagnetic Wave / Photonic Crystal / Transfer Matrix Method

Cite this article

Download citation ▾
Khem B. Thapa, Sanjay Srivastava, Alka Vishwakarma, S. P. Ojha. Tunneling properties of electromagnetic wave in slab superconducting material. Optoelectronics Letters, 2011, 7(4): 277-281 DOI:10.1007/s11801-011-1043-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

FillouxP., ParaireN.. J. Opt. A: Pure Appl. Opt., 2002, 4: S175

[2]

A. Polman and P. Wiltzius, Materials Science Aspects of Photonic Crystals, MRS Bulletin, 2001.

[3]

BertolottiM.. J. Opt. A: Pure Appl. Opt., 2006, 8: S9

[4]

DyakovS. A., TolmachevV. A., AstrovaE. V., TikhodeevS. G., TimoshenkoV. Y., PerovaT. S.. International Proc. of SPIE, 2010, 7521: 75210G

[5]

ThapaK. B.. Optical Properties of Photonic Crystals, 2006, Varanasi, IT-BHU

[6]

RichardN.. Eur. Phys. J. B, 2000, 17: 11

[7]

ChenY., HuangZ., WangQ., LiC., ShiJ.. J. Opt. A: Pure Appl. Opt., 2005, 7: 519

[8]

ChengC., XuC., ZhouT., ZhangX., XuY.. J. Phys.: Condens. Mat., 2008, 20: 275203

[9]

ShkloverV., BraginskyL., WitzG., MishrikeyM., HafnerC.. J. Comp and Theo. Nanoscience, 2008, 5: 862

[10]

LyubchanskiiI. L., DadoenkovaN. N., ZabolotinA. E., LeeY. P., RasingTh.. J. Opt. A: Pure Appl. Opt., 2009, 11: 114014

[11]

ChenS., WangY., YaoD., SongZ.. Optica Applicata, 2009, 39: 473

[12]

Alejo-MolinaA., Sánchez-MondragónJ. J., ArriojaD. A. M.-, RomeroD., Escobedo-AlatorreJ., Zamudio-LaraA.. J. Microelectronics, 2009, 40: 459

[13]

SzmulowiczF.. Phys. Lett. A, 2005, 345: 469

[14]

LeknerJ.. J. Opt. Soc. Am. A, 1994, 11: 2892

[15]

ThapaK. B., SrivastavaS., TiwariS.. J. Supercond. Nov. Magn., 2010, 23: 4517

[16]

AlyA. H.. J. Supercond. Nov. Magn., 2008, 21: 421

[17]

AlyA. H., RyuS., HsuH., WuC.-J.. Materials Chemistry and Physics, 2009, 113: 382

[18]

AlyA. H.. Materials Chemistry and Physics, 2009, 15: 391

[19]

Raymond OoiC. H., KamC. H.. J. Opt. Soc. Am. B, 2010, 27: 458

[20]

WuC.-J., WangZ.-H., YangT.-J.. J. Supercond. Nov. Magn., 2010, 23: 1395

[21]

WuC.-J., LiuC. L., KuoW. K.. J. Electromagnetic Waves and Applications, 2009, 23: 1113

[22]

WuC.-J., LiuC.-L., YangT.-J.. J. Opt. Soc. Am. B, 2009, 26: 2089

[23]

ClarkK., HassanienA., KhanS., BraunK.-F., TanakaH., HlaS.-W.. Nature Nanotechnology, 2010, 5: 261

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/