SARG04 decoy-state quantum key distribution based on an unstable source

Yuan-yuan Zhou , Xue-jun Zhou

Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (5) : 389 -393.

PDF
Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (5) : 389 -393. DOI: 10.1007/s11801-011-1040-9
Article

SARG04 decoy-state quantum key distribution based on an unstable source

Author information +
History +
PDF

Abstract

A three-state protocol for the SARG04 decoy-state quantum key distribution (QKD) based on an unstable source is presented. The lower bound to the secure key generation rate is derived without using the basic hypothesis of the original decoy-state idea. The three-state SARG04 decoy-state protocol with an unstable parametric down-conversion source is considered in the simulation. The simulation results show that the protocol in this paper with an unstable source gives a key generation rate that is close to that with a stable source, and only slight advantage appears by using a stable source when the transmission distance is long. So the SARG04 decoy-state protocol with an unstable source still can obtain the unconditional security with a slightly shortened final key.

Keywords

Stable Source / BB84 Protocol / Unconditional Security / Vacuum Source / Source Fluctuation

Cite this article

Download citation ▾
Yuan-yuan Zhou, Xue-jun Zhou. SARG04 decoy-state quantum key distribution based on an unstable source. Optoelectronics Letters, 2011, 7(5): 389-393 DOI:10.1007/s11801-011-1040-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bennett C H and Brassard G, IEEE International Conference on Computer, Systems and Signals Processing, 175 (1984).

[2]

GottesmanD., LoH. K., LutkenhausN., PreskillJ.. Quantum Inform. Comput., 2004, 4: 325

[3]

HwangW. Y.. Phys. Rev. Lett., 2003, 91: 057901

[4]

LoH. K., MaX.-f., ChenK.. Phys. Rev. Lett., 2005, 94: 230504

[5]

MaX.-f., QiB., ZhaoY., LoH. K.. Phys. Rev. A, 2005, 72: 012326

[6]

WangX.-b.. Phys. Rev. A, 2005, 72: 012322

[7]

ZhouY.-y., ZhouX.-j., GaoJ.. Optoelectron. Lett., 2010, 6: 396

[8]

HuangY.-x., LiangR.-s., HuH.-p., LuY., WangJ.-d., LiuS.-h.. Journal of Optoelectronics Laser, 2008, 19: 1521

[9]

LiX.-g., JiaZ.-h.. Journal of Optoelectronics Laser, 2008, 19: 1227

[10]

WangX.-b.. Phys. Rev. A, 2007, 75: 052301

[11]

WangX.-b., PengC.-z., ZhangJ., YangL., PanJ.-w.. Phys. Rev. A, 2008, 77: 042311

[12]

ZhaoY., QiB., LoK. L.. Phys. Rev. A, 2008, 77: 052327

[13]

HuJ.-z., WangX.-b.. Phys. Rev. A, 2010, 82: 012331

[14]

ScaraniV., AcinA., RibordyG., GisinN.. Phys. Rev. Lett., 2004, 92: 057901

[15]

GobbyC., YuanZ. L., ShieldsA. J.. Phys. Rev. Lett., 2004, 84: 3762

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/