SARG04 decoy-state quantum key distribution based on an unstable source

Yuan-yuan Zhou, Xue-jun Zhou

Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (5) : 389-393.

Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (5) : 389-393. DOI: 10.1007/s11801-011-1040-9
Article

SARG04 decoy-state quantum key distribution based on an unstable source

Author information +
History +

Abstract

A three-state protocol for the SARG04 decoy-state quantum key distribution (QKD) based on an unstable source is presented. The lower bound to the secure key generation rate is derived without using the basic hypothesis of the original decoy-state idea. The three-state SARG04 decoy-state protocol with an unstable parametric down-conversion source is considered in the simulation. The simulation results show that the protocol in this paper with an unstable source gives a key generation rate that is close to that with a stable source, and only slight advantage appears by using a stable source when the transmission distance is long. So the SARG04 decoy-state protocol with an unstable source still can obtain the unconditional security with a slightly shortened final key.

Keywords

Stable Source / BB84 Protocol / Unconditional Security / Vacuum Source / Source Fluctuation

Cite this article

Download citation ▾
Yuan-yuan Zhou, Xue-jun Zhou. SARG04 decoy-state quantum key distribution based on an unstable source. Optoelectronics Letters, 2011, 7(5): 389‒393 https://doi.org/10.1007/s11801-011-1040-9

References

[1]
Bennett C H and Brassard G, IEEE International Conference on Computer, Systems and Signals Processing, 175 (1984).
[2]
GottesmanD., LoH. K., LutkenhausN., PreskillJ.. Quantum Inform. Comput., 2004, 4: 325
[3]
HwangW. Y.. Phys. Rev. Lett., 2003, 91: 057901
CrossRef Google scholar
[4]
LoH. K., MaX.-f., ChenK.. Phys. Rev. Lett., 2005, 94: 230504
CrossRef Google scholar
[5]
MaX.-f., QiB., ZhaoY., LoH. K.. Phys. Rev. A, 2005, 72: 012326
CrossRef Google scholar
[6]
WangX.-b.. Phys. Rev. A, 2005, 72: 012322
CrossRef Google scholar
[7]
ZhouY.-y., ZhouX.-j., GaoJ.. Optoelectron. Lett., 2010, 6: 396
CrossRef Google scholar
[8]
HuangY.-x., LiangR.-s., HuH.-p., LuY., WangJ.-d., LiuS.-h.. Journal of Optoelectronics Laser, 2008, 19: 1521
[9]
LiX.-g., JiaZ.-h.. Journal of Optoelectronics Laser, 2008, 19: 1227
[10]
WangX.-b.. Phys. Rev. A, 2007, 75: 052301
CrossRef Google scholar
[11]
WangX.-b., PengC.-z., ZhangJ., YangL., PanJ.-w.. Phys. Rev. A, 2008, 77: 042311
CrossRef Google scholar
[12]
ZhaoY., QiB., LoK. L.. Phys. Rev. A, 2008, 77: 052327
CrossRef Google scholar
[13]
HuJ.-z., WangX.-b.. Phys. Rev. A, 2010, 82: 012331
CrossRef Google scholar
[14]
ScaraniV., AcinA., RibordyG., GisinN.. Phys. Rev. Lett., 2004, 92: 057901
CrossRef Google scholar
[15]
GobbyC., YuanZ. L., ShieldsA. J.. Phys. Rev. Lett., 2004, 84: 3762

This work has been supported by the National High Technology Research and Development Program of China (No.2009AAJ128).

Accesses

Citations

Detail

Sections
Recommended

/