SnO2 nanosheet as a photoanode interfacial layer for dye-sensitized solar cells

Feng-shi Cai , Jing Wang , Zhi-hao Yuan , Yue-qin Duan

Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (5) : 321 -324.

PDF
Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (5) : 321 -324. DOI: 10.1007/s11801-011-1025-8
Article

SnO2 nanosheet as a photoanode interfacial layer for dye-sensitized solar cells

Author information +
History +
PDF

Abstract

SnO2 nanosheet films about 200 nm in thickness are successfully fabricated on fluorine-doped tin oxide (FTO) glass by a facile solution-grown approach. The prepared SnO2 nanosheet film is applied as an interfacial layer between the nanocrystalline TiO2 film and the FTO substrate in dye-sensitized solar cells (DSCs). Experimental results show that the introduction of a SnO2 nanosheet film not only suppresses the electron back-transport reaction at the electrolyte/FTO interface but also provides an efficient electron transition channel along the SnO2 nanosheets, and as a result, increasing the open circuit voltage and short current density, and finally improving the conversion efficiency for the DSCs from 3.89% to 4.62%.

Keywords

SnO2 Nanosheet / Short Current Density / Nanosheet Film / Nanosheet Layer / Propylimidazolium Iodide

Cite this article

Download citation ▾
Feng-shi Cai, Jing Wang, Zhi-hao Yuan, Yue-qin Duan. SnO2 nanosheet as a photoanode interfacial layer for dye-sensitized solar cells. Optoelectronics Letters, 2011, 7(5): 321-324 DOI:10.1007/s11801-011-1025-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

O’ReganB., GrätzelM.. Nature, 1991, 353: 737

[2]

KatohR., FurubeA., BarzykinA. V., ArakawaH., TachiyaM.. Coord. Chem. Rev., 2004, 248: 1195

[3]

BurkeA., ItoS., SnaithH., BachU., KwiatkowskiJ., GrätzelM.. Nano. Lett., 2008, 8: 977

[4]

Fabregat-SantiagoF., BisquertJ., PalomaresE., OteroL., KuangD., ZakeeruddinS.M., GrätzelM.. J. Phys. Chem. C, 2007, 111: 6550

[5]

LiuQ., YeX. J., LiuC., ChenM. B.. Optoelectronics Letters, 2010, 6: 108

[6]

XuH., YangL.Y., TianH., YinS. G., ZhangF. L.. Optoelectronics Letters, 2010, 6: 176

[7]

WuJ., LanaZ., WangD., HaoaS., LinJ., HuangY., YinS., SatoT.. Electrochim. Acta, 2006, 51: 4243

[8]

FonstadC. G., RedikerR. H.. J. Appl. Phys., 1971, 42: 2911

[9]

QianJ. F., LiuP., XiaoY., JiangY., CaoY. L., AiX., YangH.. Adv. Mater., 2009, 21: 3663

[10]

HosonoE., FujiharaS., HonmaI., ZhouH.. Adv. Mater., 2005, 17: 2091

[11]

CaiF. S., LiangJ., TaoZ. L., ChenJ., XuR. S.. J. Power Sources, 2008, 177: 631

[12]

XiaJ. B., MasakiN., JiangK. J., YanagidaS.. J. Phys. Chem. C, 2007, 111: 8092

[13]

PapageorgiouN., MaierW. F., GrätzelM.. J. Electrochem. Soc., 1997, 144: 876

[14]

CaiF. S., ChenJ., XuR. S.. Chem. Lett., 2006, 35: 1266

[15]

KernR., SastrawanR., FerberJ., StanglR., LutherJ.. Electrochim. Acta, 2002, 47: 4213

[16]

ZhengY. Z., TaoX., WangL. X., XuH., HouQ., ZhouW. L., ChenJ. F.. Chem. Mater., 2010, 22: 928

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/