SnO2 nanosheet as a photoanode interfacial layer for dye-sensitized solar cells

Feng-shi Cai, Jing Wang, Zhi-hao Yuan, Yue-qin Duan

Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (5) : 321-324.

Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (5) : 321-324. DOI: 10.1007/s11801-011-1025-8
Article

SnO2 nanosheet as a photoanode interfacial layer for dye-sensitized solar cells

Author information +
History +

Abstract

SnO2 nanosheet films about 200 nm in thickness are successfully fabricated on fluorine-doped tin oxide (FTO) glass by a facile solution-grown approach. The prepared SnO2 nanosheet film is applied as an interfacial layer between the nanocrystalline TiO2 film and the FTO substrate in dye-sensitized solar cells (DSCs). Experimental results show that the introduction of a SnO2 nanosheet film not only suppresses the electron back-transport reaction at the electrolyte/FTO interface but also provides an efficient electron transition channel along the SnO2 nanosheets, and as a result, increasing the open circuit voltage and short current density, and finally improving the conversion efficiency for the DSCs from 3.89% to 4.62%.

Keywords

SnO2 Nanosheet / Short Current Density / Nanosheet Film / Nanosheet Layer / Propylimidazolium Iodide

Cite this article

Download citation ▾
Feng-shi Cai, Jing Wang, Zhi-hao Yuan, Yue-qin Duan. SnO2 nanosheet as a photoanode interfacial layer for dye-sensitized solar cells. Optoelectronics Letters, 2011, 7(5): 321‒324 https://doi.org/10.1007/s11801-011-1025-8

References

[1]
O’ReganB., GrätzelM.. Nature, 1991, 353: 737
CrossRef Google scholar
[2]
KatohR., FurubeA., BarzykinA. V., ArakawaH., TachiyaM.. Coord. Chem. Rev., 2004, 248: 1195
CrossRef Google scholar
[3]
BurkeA., ItoS., SnaithH., BachU., KwiatkowskiJ., GrätzelM.. Nano. Lett., 2008, 8: 977
CrossRef Google scholar
[4]
Fabregat-SantiagoF., BisquertJ., PalomaresE., OteroL., KuangD., ZakeeruddinS.M., GrätzelM.. J. Phys. Chem. C, 2007, 111: 6550
CrossRef Google scholar
[5]
LiuQ., YeX. J., LiuC., ChenM. B.. Optoelectronics Letters, 2010, 6: 108
CrossRef Google scholar
[6]
XuH., YangL.Y., TianH., YinS. G., ZhangF. L.. Optoelectronics Letters, 2010, 6: 176
CrossRef Google scholar
[7]
WuJ., LanaZ., WangD., HaoaS., LinJ., HuangY., YinS., SatoT.. Electrochim. Acta, 2006, 51: 4243
CrossRef Google scholar
[8]
FonstadC. G., RedikerR. H.. J. Appl. Phys., 1971, 42: 2911
CrossRef Google scholar
[9]
QianJ. F., LiuP., XiaoY., JiangY., CaoY. L., AiX., YangH.. Adv. Mater., 2009, 21: 3663
CrossRef Google scholar
[10]
HosonoE., FujiharaS., HonmaI., ZhouH.. Adv. Mater., 2005, 17: 2091
CrossRef Google scholar
[11]
CaiF. S., LiangJ., TaoZ. L., ChenJ., XuR. S.. J. Power Sources, 2008, 177: 631
CrossRef Google scholar
[12]
XiaJ. B., MasakiN., JiangK. J., YanagidaS.. J. Phys. Chem. C, 2007, 111: 8092
CrossRef Google scholar
[13]
PapageorgiouN., MaierW. F., GrätzelM.. J. Electrochem. Soc., 1997, 144: 876
CrossRef Google scholar
[14]
CaiF. S., ChenJ., XuR. S.. Chem. Lett., 2006, 35: 1266
CrossRef Google scholar
[15]
KernR., SastrawanR., FerberJ., StanglR., LutherJ.. Electrochim. Acta, 2002, 47: 4213
CrossRef Google scholar
[16]
ZhengY. Z., TaoX., WangL. X., XuH., HouQ., ZhouW. L., ChenJ. F.. Chem. Mater., 2010, 22: 928
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (Nos.20903073 and 20671070), the Key Project of Education Ministry of China (No.207008), the Natural Science Foundation of Tianjin (No.09JCYBJC07000), and the Science and Technology Developing Foundation for Tianjin Universities (No.20080309).

Accesses

Citations

Detail

Sections
Recommended

/