Luminescence enhancement from Si-based materials by introducing a photonic crystal double-heterostructure slot waveguide microcavity

Yue Wang , Yuan-da Wu , Jia-shun Zhang , Jun-ming An , Xiongwei Hu

Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (4) : 266 -268.

PDF
Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (4) : 266 -268. DOI: 10.1007/s11801-011-1023-x
Article

Luminescence enhancement from Si-based materials by introducing a photonic crystal double-heterostructure slot waveguide microcavity

Author information +
History +
PDF

Abstract

We demonstrate a novel SOI-based photonic crystal (PC) double-heterostructure slot waveguide microcavity constructed by cascading three PC slot waveguides with different slot widths, and simulate the luminescence enhancement of sol-gel Erdoped SiO2 filled in the microcavity by finite-difference time-domain (FDTD) method. The calculated results indicate that a unique sharp resonant peak dominates in the spectrum at the expected telecommunication wavelength of 1.5509 μm, with very high normalized peak intensity of ∼108. The electromagnetic field of the resonant mode exhibits the strongest in the microcavity, and decays rapidly to zero along both sides, which means that the resonant mode field is well confined in the microcavity. The simulation results fully verify the enhancement of luminescence by PC double-heterostructure slot waveguide microcavity theoretically, which is a promising way to realize the high-efficiency luminescence of Si-based materials.

Keywords

Photonic Crystal / Slot Width / Photonic Crystal Structure / Slot Waveguide / Luminescence Enhancement

Cite this article

Download citation ▾
Yue Wang, Yuan-da Wu, Jia-shun Zhang, Jun-ming An, Xiongwei Hu. Luminescence enhancement from Si-based materials by introducing a photonic crystal double-heterostructure slot waveguide microcavity. Optoelectronics Letters, 2011, 7(4): 266-268 DOI:10.1007/s11801-011-1023-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ZhengJ., ZuoY. H., ZhangL. Z., WangW., XueC. L., ChengB. W., YuJ. Z., GuoH. Q., WangQ. M.. J. Lumin., 2010, 130: 1760

[2]

XuQ. T., LiK., KongF. M., LiuQ.. Optoelectronics Letters, 2009, 5: 405

[3]

WuC. J., LiY. P., WangZ. Y.. Optoelectronics Letters, 2009, 5: 321

[4]

GaoY. F., ZhouJ., ZhouM., ChenM. Y., ZhangW.. Optoelectronics Letters, 2010, 6: 417

[5]

LourtiozJ.-M., DavidS., KurdiM. E., KammererC., LiX., SauvageS., ChelnokovA., ThanhV. L., BouchierD., BoucaudP.. Mat. Res. Soc. Symp. Pro., 2004, 797: W6.1.1

[6]

LiX., BoucaudP., ChecouryX., KermarrecO., CampidelliY., BensahelD.. J. Appl. Phys., 2006, 99: 023103-1

[7]

SalomonA., CalvoV., ZelsmannM., CharvolinT., FedeliJ.-M., HadjiE.. IEEE J. Sel. Top. Quan. Electron., 2006, 12: 1592

[8]

MakarovaM., SihV., WargaJ., LiR., NegroL. D., VuckovicJ.. Appl. Phys. Lett., 2008, 92: 161107-161101

[9]

YangH. H., ShengX. X., LuL., SongX., DuW., WangC. X., ChenH. D.. J. Optoelectronics·Laser, 2008, 19: 569

[10]

SakodaK.. Opt. Express, 1999, 4: 167

[11]

XuX. S., ChengB. Y., ZhangD. Z.. J. Phys. Condens. Matter, 2003, 15: 7455

[12]

AlmeidaV. R., XuQ. F., BarriosC. A., LipsonM.. Opt. Lett., 2004, 29: 1209

[13]

SongB. S., NodaS., AsanoT., AkahaneY.. Nat. Mater., 2005, 4: 207

[14]

KuramochiE., NotomiM., MitsugiS., ShinyaA., TanabeT., WatanabeT.. Appl. Phys. Lett., 2006, 88: 041112-1

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/