Investigation on bismuth-oxide photonic crystal fiber for optical parametric amplification

Cang Jin, Lan Rao, Jin-hui Yuan, Xiang-wei Shen, Chong-xiu Yu

Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (3) : 194-197.

Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (3) : 194-197. DOI: 10.1007/s11801-011-1003-1
Article

Investigation on bismuth-oxide photonic crystal fiber for optical parametric amplification

Author information +
History +

Abstract

A hexagonal solid-core bismuth-oxide micro-structure fiber is developed to balance its dispersion and nonlinearity. This simulation and calculation results show that the bismuth-oxide photonic crystal fiber (Bi-PCF) has near zero dispersion around 1550 nm. Its dispersion slop in the communication wavelength range is also relatively flat. Moreover, both nonlinear coefficient and model field distribution are obtained. Compared with the experimental results by SiO2-PCF, it can be seen that the Bi-PCF shows excellent characteristics for the optical parametric amplification (OPA).

Keywords

Nonlinear Coefficient / Beam Propagation Method / Total Dispersion / Lead Silicate / Confinement Loss

Cite this article

Download citation ▾
Cang Jin, Lan Rao, Jin-hui Yuan, Xiang-wei Shen, Chong-xiu Yu. Investigation on bismuth-oxide photonic crystal fiber for optical parametric amplification. Optoelectronics Letters, 2011, 7(3): 194‒197 https://doi.org/10.1007/s11801-011-1003-1

References

[1]
AgrawalG. P.. Nonlinear Fiber Optics, 2007, 4th EditionSan Diego, Academic Press: 17
[2]
ToulouseJ.. Journal of Lightwave Technology, 2005, 23: 3625
CrossRef Google scholar
[3]
SudoS., HosakaT., ItohH., OkamotoK.. Electronics Letters, 1986, 22: 833
CrossRef Google scholar
[4]
OnishiM., OkunoT., KashiwadaT., IshikawaS., AkaskaN., NishimuraM.. Proc. ECOC/IOOC, 1997, 2: 115
[5]
HoriT., NishizawaN., GotoT., YoshidaM.. Journal of the Optical Society of America B, 2004, 21: 1969
CrossRef Google scholar
[6]
LiuX.-x., XinX.-j., YuanJ.-h., LiuX.-q., SangX., YuC.-x.. Optoelectronics Letters, 2010, 6: 367
CrossRef Google scholar
[7]
MaJ., YuJ., YuC., JiaZ., SangX., ZhouZ., WangT., ChangG. K.. Journal of Lightwave Technology, 2006, 24: 2851
CrossRef Google scholar
[8]
TangM., GongY., ShumP.. IEEE Photon. Technol. Lett., 2005, 17: 148
CrossRef Google scholar
[9]
LiJ., BerntsonA., JacobsenG.. IEEE Photon. Technol. Lett., 2008, 20: 691
CrossRef Google scholar
[10]
WatanabeS., FutamiF., OkabeR., LudwigR., Schmidt-LanghorstC., HuettlB., SchubertC., WeberH. G.. IEEE J. Sel. Top. in Quantum Electronics, 2008, 14: 674
CrossRef Google scholar
[11]
WatanabeS.. Journal of Optical and Fiber Communications Research, 2005, 3: 1
CrossRef Google scholar
[12]
HiranoM., NakanishiT., OkunoT., OnishiM.. IEEE J. Sel. Top. in Quantum Electronics, 2009, 15: 103
CrossRef Google scholar
[13]
RadicS., McKinstrieC. J., JopsonR. M., CentanniJ. C., LinQ., AgrawalG. P.. Electronics Letters, 2003, 39: 838
CrossRef Google scholar
[14]
SugimotoN., KanbaraH., FujiwaraS.. Journal of the Optical Society of America B, 1999, 16: 1904
CrossRef Google scholar
[15]
SekiK., YamashitaS.. Optics Express, 2008, 16: 13871
CrossRef Google scholar
[16]
T. Hasegawa and S. Ohara, Proc. Optical Fiber Communication, OThK2 (2009).

This work has been supported by the “973” Project of China (No.2010CB328300).

Accesses

Citations

Detail

Sections
Recommended

/