Synthesis and photoluminescence properties of CdS hollow nanospheres by chemical vapor deposition

Jia-qing Mo, Zhi-qiang Feng, Jun-wei Hou, Zhen-hong Jia, Xiao-yi Lv

Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (3) : 161-163.

Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (3) : 161-163. DOI: 10.1007/s11801-011-0181-1
Article

Synthesis and photoluminescence properties of CdS hollow nanospheres by chemical vapor deposition

Author information +
History +

Abstract

High-density CdS hollow nanospheres are successfully synthesized by a simple chemical vapor deposition technology. The crystal structure, compositional information, and morphological structure are characterized by X-ray diffraction (XRD), scanning electronic microscopy (SEM), transmission electronic microscopy (TEM), and energy-dispersive X-ray spectrometer (EDX). The results show that the as-prepared CdS hollow nanospheres have uniform size about 1 3 m in diameter. The Kirkendall phenomenon is proposed for the formation of the CdS nanostructures. A strong emission located at 580 nm is observed.

Keywords

Hollow Sphere / Kirkendall Effect / Urumqi 830046 / Alumina Tube Furnace / Ostwald Ripening Mechanism

Cite this article

Download citation ▾
Jia-qing Mo, Zhi-qiang Feng, Jun-wei Hou, Zhen-hong Jia, Xiao-yi Lv. Synthesis and photoluminescence properties of CdS hollow nanospheres by chemical vapor deposition. Optoelectronics Letters, 2011, 7(3): 161‒163 https://doi.org/10.1007/s11801-011-0181-1

References

[1]
NakashimaT., KimizukaN.. J. Am. Chem. Soc., 2003, 125: 6386
CrossRef Google scholar
[2]
CarusoF., CarusoR. A., MohwaldH.. Science, 1998, 282: 1111
CrossRef Google scholar
[3]
YinY. D., RiouxR. M., ErdonmezC. K., HughesM. G., SomorjaiG. A., AlivisatosA. P.. Science, 2004, 304: 711
CrossRef Google scholar
[4]
HuynhW., DittmerJ. J., AlivisatosA. P.. Science, 2002, 295: 225
CrossRef Google scholar
[5]
GaoS. M., LuJ., ZhaoY., ChenN., XieY.. Chem. Commun., 2002, 23: 2880
CrossRef Google scholar
[6]
CoeS., WooW. K., BawendiM., BulovicV.. Nature, 2002, 420: 800
CrossRef Google scholar
[7]
AlivisatosA. P.. Nat. Biotechnol., 2004, 22: 47
CrossRef Google scholar
[8]
WuX., LiuH., LiuJ.. Nat. Biotechnol., 2003, 21: 41
CrossRef Google scholar
[9]
DinsmoreA. D., HsuM. F., NikolaidesM. G., MarquezM., BauschA. R., WeitzD. A.. Science, 2002, 298: 1006
CrossRef Google scholar
[10]
CarusoR. A., SchattkaJ. H., GreinerA.. Adv. Mater., 2001, 13: 1577
CrossRef Google scholar
[11]
ValtchevV.. Chem. Mater., 2002, 14: 956
CrossRef Google scholar
[12]
QiL. M., LiJ., MaJ. M.. Adv. Mater., 2002, 14: 300
CrossRef Google scholar
[13]
PengQ., DongY., LiY. Angew.. Chem. Int. Ed., 2003, 42: 3027
CrossRef Google scholar
[14]
YinY. D., RiouxR. M., ErdonmezC. K., UghesS., SomorjaiG. A., AlivisatosA. P.. Science, 2004, 304: 711
CrossRef Google scholar
[15]
LiuB., ZengH. C.. Small, 2005, 1: 566
CrossRef Google scholar
[16]
NellM., MarohnJ., MclendonG.. J. Phys. Chem., 1990, 94: 4359
[17]
SpanhelL., HaaseM., WellerH., HengleinA.. J. Am. Chem. Soc., 1987, 109: 5649
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/