Optical properties of dyes with/without metal nanoparticles doped in a highly ordered nanostructure

Li-ping Sun , Yu-dong Li , Ji-wei Qi , Jing-jun Xu , Qian Sun

Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (2) : 88 -91.

PDF
Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (2) : 88 -91. DOI: 10.1007/s11801-011-0175-z
Article

Optical properties of dyes with/without metal nanoparticles doped in a highly ordered nanostructure

Author information +
History +
PDF

Abstract

Highly ordered nanocomposite arrays of Rh6G-Au-AAO are formed by filling anodized aluminum oxide (AAO) with Rhodamine 6G (Rh6G) and gold nanoparticles. The optical properties of Rh6G-Au-AAO are studied by visible absorptive and fluorescent spectroscopy. Compared with the fluorescence spectra of Rh6G-Au in the solution environment, the fluorescence peak intensities of Rh6G-Au-AAO are significantly enhanced, the maximum enhancement rate is 5.5, and a constant blue shift of ∼12 nm of peak positions is presented. The effects come from the spatial confinement of AAO and the inhibition of the fluorescence quenching effect induced by gold nanoparticles. The results show that the nanocomposite structures of fluorescence molecules-metal nanoparticles-AAO have a considerable potential in engineering molecular assemblies and creating functional materials of superior properties for future nanophotonics.

Keywords

Gold Nanoparticles / Anodize Aluminum Oxide / Localize Surface Plasmon Resonance / Fluorescence Enhancement / Anodize Aluminum Oxide Membrane

Cite this article

Download citation ▾
Li-ping Sun, Yu-dong Li, Ji-wei Qi, Jing-jun Xu, Qian Sun. Optical properties of dyes with/without metal nanoparticles doped in a highly ordered nanostructure. Optoelectronics Letters, 2011, 7(2): 88-91 DOI:10.1007/s11801-011-0175-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

KnobbeE. T., DunnB., FuquaP. D.. Applied Optics, 1990, 29: 2729

[2]

SauterB., BrauchleC.. Chemical Physics Letters, 1992, 192: 321

[3]

GanZ. Y., ZhuW. Q., WeiB., ZhangZ. L., JiangX. Y.. Journal of Optoelectronics Laser, 2009, 20: 878

[4]

MonteF. d., MackenzieJ. D., LevyD.. Langmuir, 2000, 16: 7377

[5]

InnozenciP., KozukaH., YokoT.. Journal of Physical Chemistry B, 1997, 101: 3680

[6]

WangJ. L., HeZ. Q., WangY. S., WangJ., KongX. F., LiangC. J.. Journal of Optoelectronics Laser, 2009, 20: 337

[7]

KurbanovS. S., ShaymardanovZ. Sh., SymdzhanovM. A.. Optical Materials, 2007, 29: 1177

[8]

HuangL. F., SaitoM., MiyagiM.. Appied Optics, 1993, 32: 2039

[9]

LevitskyI. A., LiangJ., XuJ. M.. Applied Physics Letters, 2002, 81: 1696

[10]

WangS., LuoH., WangY., GongG.. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2003, 59: 1139

[11]

ZoriniantsG., BarnesW. L.. New Journal of Physics, 2008, 10: 105002

[12]

StranikO., NooneyR., McDonaghC., MacCraithB. D.. Plasmonics, 2007, 2: 15

[13]

LimI.-I. S., GoroleskiF., MottD., KariukiN., IpW., LuoJ., ZhongC.. Journal of Physical Chemistry B, 2006, 110: 6673

[14]

ChandrasekharanN., KamatP. V., HuJ., HonesG.. Journal of Physical Chemistry B, 2000, 104: 11103

[15]

LiuI., ChenY., SuW.. Journal of Photochemistry and Photobiology A-Chemistry, 2008, 199: 291

[16]

IanoulA., BergeronA.. Langmuir, 2006, 22: 10217

[17]

ZhaoJ., JensenL., SungJ., ZouS., SchatzG. C., Van DuyneR. P.. Journal of the American Chemical Society, 2007, 129: 7647

[18]

SokolovK., ChumanovG., CottonT. M.. Analytical Chemistry, 1998, 70: 3898

[19]

TurkevichI., StevensonP.C., HillierJ.. Discussions of the Faraday Society, 1951, 11: 55

AI Summary AI Mindmap
PDF

163

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/