Effect of substrate temperature on aligned high-density carbon nanotubes deposited by RF-PECVD

Kai-liang Zhang , Xin-yuan Lin , Wang Xu , Yin-ping Miao , Kai Hu , Yong Zhang

Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (2) : 85 -87.

PDF
Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (2) : 85 -87. DOI: 10.1007/s11801-011-0169-x
Article

Effect of substrate temperature on aligned high-density carbon nanotubes deposited by RF-PECVD

Author information +
History +
PDF

Abstract

The high-density carbon nanotubes (CNTs) are synthesized on Fe/Si substrate in the mixture of acetylene and hydrogen gas by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) method. The effects of substrate temperature on the growth of CNTs are studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. The quality of CNTs is improved considerably by increasing the substrate temperature while the beam density is increased and graphitization degree (ID/IG) is enhanced. The best aligned CNTs are prepared at 750 °C, the beam D density is about 1.6 × 103/μm2, and ID/IG is about 0.93. Temperature influence is also discussed.

Keywords

Raman Spectrum / Scanning Electron Microscopy Image / Substrate Temperature / Beam Density / Catalyst Film

Cite this article

Download citation ▾
Kai-liang Zhang, Xin-yuan Lin, Wang Xu, Yin-ping Miao, Kai Hu, Yong Zhang. Effect of substrate temperature on aligned high-density carbon nanotubes deposited by RF-PECVD. Optoelectronics Letters, 2011, 7(2): 85-87 DOI:10.1007/s11801-011-0169-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LuX.-y., HuaZ.-z., LiuM.-j., ChengY.. Journal of Optoelectronics · Laser, 2009, 20: 5

[2]

FuC.-f., ChenX.-m., LiL., HanL.-f., WuX.-g.. Optoelectronics Letters, 2010, 6: 37

[3]

IjimaS.. Nature, 1991, 354: 56

[4]

KimP., ShiL., MajumdarL., McEuenP.. Phys. Rev. Lett., 2001, 87: 215502

[5]

PopE., MannD., WangQ., GoodsonK., DaiH.. Nano Letter, 2006, 6: 96

[6]

BaoW.-x., ZhuC.-c.. Acta Physica Sinica, 2006, 55: 3552

[7]

HouQ.-w., CaoB.-y., GuoZ.-y.. Acta Physica Sinica, 2009, 58: 7809

[8]

MeyyappanM., DelzeitL., CassellA., HashD.. Plasma Sources Science and Technology, 2003, 12: 205

[9]

ZhangY., ZouG., DoornS. K.. ACS Nano, 2009, 3: 2157

[10]

HofmannS., BlumeR., WirthC. T.. J. Phys. Chem. C, 2009, 113: 1648

[11]

LeeD. H., LeeW. J., KimS. O.. Chem. Mater., 2009, 21: 1368

[12]

ShiY., DingY., LiuH., JiangW., LuB.. Applied Surface Science, 2009, 255: 7713

[13]

XiaoQ., YangB.-h., ZhuS.-s.. Journal of Optoelectronics · Laser, 2010, 21: 1333

[14]

GaoF., SubhadeepM., CuiQ., GuZ.. J. Phys. Chem. C, 2009, 113: 9546

[15]

TingJ.-M., LiaoK.-h.. Chemical Physics Letters, 2004, 396: 469

[16]

ShinY. M., JeongS. Y., JeongH. J.. Journal of Crystal Growth, 2004, 271: 81

[17]

NessimG. D., HartA. J., KimJ. S.. Nano Letters, 2008, 8: 3587

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/