Energy band design for p-type tensile strained Si/SiGe multi-quantum well infrared photodetector

Jin-tao Li, Song-yan Chen, Dong-feng Qi, Wei Huang, Cheng Li, Hong-kai Lai

Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (3) : 175-177.

Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (3) : 175-177. DOI: 10.1007/s11801-011-0164-2
Article

Energy band design for p-type tensile strained Si/SiGe multi-quantum well infrared photodetector

Author information +
History +

Abstract

The band structure of the confined states is calculated for Si/SiGe multi-quantum well infrared photodetector (M-QWIP). The influence of the Ge component in pseudosubstrate on the energy band structure of Si/Si{in0.54}Ge{in0.46} multi-quantum wells (MQWs) is investigated. It is found that the high energy levels in the MQWs move up while the low energy levels move down as the Ge component in pseudosubstrate increases. The influence of the barrier width on the energy band structure of MQWs is also studied based on the 6 × 6 k·p method. The results show that the Si barrier between 5 nm and 10 nm is optimized to enhance the intersubband absorption in the MQWs.

Keywords

Band Edge / Heavy Hole / High Energy Level / Light Hole / Energy Band Structure

Cite this article

Download citation ▾
Jin-tao Li, Song-yan Chen, Dong-feng Qi, Wei Huang, Cheng Li, Hong-kai Lai. Energy band design for p-type tensile strained Si/SiGe multi-quantum well infrared photodetector. Optoelectronics Letters, 2011, 7(3): 175‒177 https://doi.org/10.1007/s11801-011-0164-2

References

[1]
DaiZ.-r., ZhangX.-x., PengZ.-s.. Journal of OptoelectronicsLaser, 2010, 21: 813
[2]
ShiJ.-j., TianZ.-h., QinL.. Journal of OptoelectronicsLaser, 2010, 21: 1445
[3]
LevineB. F., ZussmanA., KuoJ. M.. J. Appl. Phys., 1992, 71: 5130
CrossRef Google scholar
[4]
S. M. SZE and KWOK K. NG, Physics of Semiconductor Devices, Third Edition, John Wiley & Sons, Inc Press, 2007.
[5]
LevineB. F., BetheaC. G., HasnainG.. Appl. Phys. Lett., 1988, 53: 296
CrossRef Google scholar
[6]
XieH., KatzJ., WangW. I.. Appl. Phys. Lett., 1991, 59: 3601
CrossRef Google scholar
[7]
WangY. H., LiS. S., ChuJ.. Appl. Phys. Lett., 1994, 64: 727
CrossRef Google scholar
[8]
RauterP., FromherzT., FalubC.. Appl. Phys. Lett., 2009, 94: 081115
CrossRef Google scholar
[9]
DengH.-q.. Journal of Semiconductors, 2008, 29: 785
[10]
LIU En-ke, ZHU Bing-sheng and LUO Jin-sheng, Physics of Semiconductor, Forth Edition, National Defense Industry Press, 2006. (in Chinese)
[11]
LinG.-j.. Journal of Semiconductors, 2006, 27: 916
[12]
SHENG Chi, JIANG Zui-min and LU Fang, Silicon-Germanium Superlattices and Low Dimensional Quantum Structures, Shanghai Scientific & Technical Publishers, 2004. (in Chinese)

This work has been supported by the National Natural Science Foundation of China (No.60837001) and the Major State Basic Research Development Program of China (No.2007CB613404).

Accesses

Citations

Detail

Sections
Recommended

/