Synthesis and optical properties of two novel ZnO flowerlike and spindlelike nanostructures

Hong Liu , Wei-sheng Wang

Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (2) : 81 -84.

PDF
Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (2) : 81 -84. DOI: 10.1007/s11801-011-0163-3
Article

Synthesis and optical properties of two novel ZnO flowerlike and spindlelike nanostructures

Author information +
History +
PDF

Abstract

A new aqueous chemical growth method for generation of ZnO flowerlike and spindlelike nanostructures, transformed from layered basic zinc acetate (LBZA) nanobelts, is developed. The novel as-synthesized ZnO flowerlike and spindlelike nanostructures are mainly due to the pH. They are characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The X-ray diffraction peaks indicate that these ZnO nanostructures prefer to grow along the C-axis. Photoluminescence (PL) measurements show that the ZnO flowerlike nanostructures have strong ultraviolet (UV) emission properties at 380 nm, while no defect-related visible emission can be detected. The good performance for photoluminescence emission makes the ZnO flowerlike nanostructures to be promising candidates for photonic and electronic device applications.

Keywords

Zinc Hydroxide / Electronic Device Application / Chemical Solution Route / Flowerlike Structure / Strong Band Edge Emission

Cite this article

Download citation ▾
Hong Liu, Wei-sheng Wang. Synthesis and optical properties of two novel ZnO flowerlike and spindlelike nanostructures. Optoelectronics Letters, 2011, 7(2): 81-84 DOI:10.1007/s11801-011-0163-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ServiceR. F.. Science, 1997, 267: 895

[2]

KindH., YanH., MesserB., LawM., YangP.. Adv. Mater., 2002, 14: 158

[3]

LeeaJ.S., KangaM.I., KimaS., LeebM.S., LeeY.K.. J. Cryst. Growth, 2003, 249: 201

[4]

ParkK., LeeJ.S., SungM.Y., KimS.. Jpn. J. Appl. Phys., 2002, 1: 7317

[5]

TsengY.K., LinI.N., LiuK.S., LinT.S., ChenI.C.. J. Mater. Res., 2003, 18: 714

[6]

NgH.T., ChenB., LiJ., HanJ., MeyappanM., WuJ.. Appl. Phys. Lett., 2003, 82: 2023

[7]

HuangM.H., MaoS., FeikH., YanH., WuY., KindH.. Science, 2001, 292: 1897

[8]

ParkW. I., YiG. C., KinM., PennycookS. J.. Adv. Mater., 2002, 24: 1841

[9]

VayssieresL., KeisK., LindquistS.E., HagfeldtA.. J. Phys. Chem. B, 2001, 105: 3350

[10]

VayssieresL., KeisK., HagfeldtA., LindquistS. E.. Chem. Mater., 2001, 13: 4395

[11]

KongX. Y., DingY., YangR. S., WangZ. L.. Science, 2004, 303: 1384

[12]

YanH. Q., HeR. R., JohnsonJ., LawM., SaykallyR. J., YangP. D.. Am. Chem. Soc., 2003, 125: 4728

[13]

VayssieresL.. Adv. Mater., 2005, 15: 464

[14]

WeiA., SunX. W., XuC. X., DongZ. L., YangY., TanS. T., HuangW.. Nanotechnology, 2006, 17: 1740

[15]

GreeneL. E., YuhasB. D., LawM., ZitounD., YangP.. Inorg. Chem., 2006, 45: 7535

[16]

WangZ., QianX. F., YinJ., ZhuZ. K.. Langmuir, 2004, 20: 3441

[17]

GovenderK., BoyleD. S., KenwayP. B., BrienP. O.. J. Mater. Chem., 2004, 14: 2575

[18]

WuJ. J., LiuS. C.. J. Phys. Chem. B, 2002, 106: 9546

[19]

WuY., YanH., HuangM., MesserB., SongJ. H., YangP.. Chem. Eur. J., 2002, 8: 1260

[20]

BaiW., YuK., ZhangQ., XuF., PengD., ZhuZ.. Mater. Lett., 2007, 61: 3469

[21]

ZhangH. X., FengJ., WangJ., ZhangM. L.. Mater. Lett., 2007, 61: 5202

[22]

TianZ. R., VoigtJ. A., LiuJ., MckenzieB., McdermottM. J.. J. Am. Chem. Soc., 2002, 12: 954

[23]

LiJ., ChenY. R., ZhaoQ. H., ZhouM. C., XuS. X.. Optoelectronics Lettens, 2010, 6: 69

[24]

ShenG. Z., BandoY., LiuB. D., GolbergD., LeeC. J.. Adv. Funct. Mater., 2006, 16: 410

[25]

StudenikinS. A., CociveraM.. J. Appl. Phys., 2002, 91: 5060

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/