Manufacture tolerance analysis and control for a polymer-on-silicon Mach-Zehnder-interferometer-based electro-optic switch

Chuan-tao Zheng , Chun-sheng Ma , Xin Yan , Zhan-chen Cui , Da-ming Zhang

Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (2)

PDF
Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (2) DOI: 10.1007/s11801-011-0148-2
Article

Manufacture tolerance analysis and control for a polymer-on-silicon Mach-Zehnder-interferometer-based electro-optic switch

Author information +
History +
PDF

Abstract

To enhance the electro-optic (EO) modulation efficiency and realize the impedance-matching, a polymer-on-silicon multimode interference (MMI) Mach-Zehnder interferometer (MZI) -based electro-optic (EO) switch is designed and optimized. Under the central operation wavelength of 1550 nm, the driving voltages of the designed switch are 0 and ±1.375 V, respectively, with a short active region length of 5 mm, and the characteristic impedance of the electrode is about 49.6 Ω. The manufacture tolerance is analyzed for instructing the device fabrication. The results show that to realize ideal switching function, high fabrication accuracy on the buffer thickness, core thickness, electrode width and MMI waveguide width is extremely required, and a small voltage drift of −0.03 0.05 V is also expected for reducing the crosstalk to less than −30 dB. The allowed 3 dB bandwidth is 60 nm, and within this spectrum range, the insertion loss and crosstalk are less than 6.71 dB and −30 dB, respectively.

Keywords

Insertion Loss / Driving Voltage / Core Thickness / Refractive Index Variation / Electrode Width

Cite this article

Download citation ▾
Chuan-tao Zheng, Chun-sheng Ma, Xin Yan, Zhan-chen Cui, Da-ming Zhang. Manufacture tolerance analysis and control for a polymer-on-silicon Mach-Zehnder-interferometer-based electro-optic switch. Optoelectronics Letters, 2011, 7(2): DOI:10.1007/s11801-011-0148-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

WangW., LiE. B., ZhangC. L., LvP., TangC. X.. J. Optoelectron. Laser, 2008, 19: 1571

[2]

PanJ. X., GaoY., LiY., HaoY. L., LiX. H., JiangX. Q., WangM. H., YangJ. Y.. J. Optoelectron. Laser, 2008, 19: 1587

[3]

JinZ., PengG. D.. Opt. Commun., 2004, 241: 299

[4]

YanX., MaC. S., ZhengC. T., WangX. Y., ZhangD. M.. Optoelectron. Lett., 2009, 5: 0081

[5]

ZhengC. T., MaC. S., YanX., WangX. Y., ZhangD. M.. Opt. Commun., 2008, 281: 5998

[6]

ZhengC. T., MaC. S., YanX., WangX. Y., ZhangD. M.. Appl. Phys. B: Lasers Opt., 2010, 98: 511

[7]

EnamiY., MathineD., DeRoseC.T., NorwoodR. A., LuoJ., JenA. K. Y., PeyghambarianN.. Appl. Phys. Lett., 2007, 91: 093505

[8]

EnamiY., DeRoseC. T., MathineD., LoychikC., GreenleeC., NorwoodR. A., KimT. D., LuoJ., TianY., JenA. K. Y., PeyghambarianN.. Nature Photon, 2007, 1: 180

[9]

PitoisC., VukmirovicC., HultA.. Macromolecules, 1999, 32: 2903

[10]

DriscollW. G., VaughanW.. Handbook of Optics, 1978, New York, McGraw-Hill: 7

[11]

ZhengC. T., MaC. S., YanX., WangX. Y., ZhangD. M.. Optoelectron. Lett., 2010, 6: 0350

AI Summary AI Mindmap
PDF

96

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/