Manufacture tolerance analysis and control for a polymer-on-silicon Mach-Zehnder-interferometer-based electro-optic switch

Chuan-tao Zheng, Chun-sheng Ma, Xin Yan, Zhan-chen Cui, Da-ming Zhang

Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (2) : 0.

Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (2) : 0. DOI: 10.1007/s11801-011-0148-2
Article

Manufacture tolerance analysis and control for a polymer-on-silicon Mach-Zehnder-interferometer-based electro-optic switch

Author information +
History +

Abstract

To enhance the electro-optic (EO) modulation efficiency and realize the impedance-matching, a polymer-on-silicon multimode interference (MMI) Mach-Zehnder interferometer (MZI) -based electro-optic (EO) switch is designed and optimized. Under the central operation wavelength of 1550 nm, the driving voltages of the designed switch are 0 and ±1.375 V, respectively, with a short active region length of 5 mm, and the characteristic impedance of the electrode is about 49.6 Ω. The manufacture tolerance is analyzed for instructing the device fabrication. The results show that to realize ideal switching function, high fabrication accuracy on the buffer thickness, core thickness, electrode width and MMI waveguide width is extremely required, and a small voltage drift of −0.03 0.05 V is also expected for reducing the crosstalk to less than −30 dB. The allowed 3 dB bandwidth is 60 nm, and within this spectrum range, the insertion loss and crosstalk are less than 6.71 dB and −30 dB, respectively.

Keywords

Insertion Loss / Driving Voltage / Core Thickness / Refractive Index Variation / Electrode Width

Cite this article

Download citation ▾
Chuan-tao Zheng, Chun-sheng Ma, Xin Yan, Zhan-chen Cui, Da-ming Zhang. Manufacture tolerance analysis and control for a polymer-on-silicon Mach-Zehnder-interferometer-based electro-optic switch. Optoelectronics Letters, 2011, 7(2): 0 https://doi.org/10.1007/s11801-011-0148-2

References

[1]
WangW., LiE. B., ZhangC. L., LvP., TangC. X.. J. Optoelectron. Laser, 2008, 19: 1571
[2]
PanJ. X., GaoY., LiY., HaoY. L., LiX. H., JiangX. Q., WangM. H., YangJ. Y.. J. Optoelectron. Laser, 2008, 19: 1587
[3]
JinZ., PengG. D.. Opt. Commun., 2004, 241: 299
CrossRef Google scholar
[4]
YanX., MaC. S., ZhengC. T., WangX. Y., ZhangD. M.. Optoelectron. Lett., 2009, 5: 0081
CrossRef Google scholar
[5]
ZhengC. T., MaC. S., YanX., WangX. Y., ZhangD. M.. Opt. Commun., 2008, 281: 5998
CrossRef Google scholar
[6]
ZhengC. T., MaC. S., YanX., WangX. Y., ZhangD. M.. Appl. Phys. B: Lasers Opt., 2010, 98: 511
CrossRef Google scholar
[7]
EnamiY., MathineD., DeRoseC.T., NorwoodR. A., LuoJ., JenA. K. Y., PeyghambarianN.. Appl. Phys. Lett., 2007, 91: 093505
CrossRef Google scholar
[8]
EnamiY., DeRoseC. T., MathineD., LoychikC., GreenleeC., NorwoodR. A., KimT. D., LuoJ., TianY., JenA. K. Y., PeyghambarianN.. Nature Photon, 2007, 1: 180
CrossRef Google scholar
[9]
PitoisC., VukmirovicC., HultA.. Macromolecules, 1999, 32: 2903
CrossRef Google scholar
[10]
DriscollW. G., VaughanW.. Handbook of Optics, 1978, New York, McGraw-Hill: 7
[11]
ZhengC. T., MaC. S., YanX., WangX. Y., ZhangD. M.. Optoelectron. Lett., 2010, 6: 0350
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (Nos. 60706011, 60807029, and 61077041), the Fund of Ministry of Education of China (Nos. 20070183087 and 20090061110041), the Science and Technology Fund of Jilin Province of China (No. 20080125), and the National Basic Research Development Program of China (No. 2006CB302803).

Accesses

Citations

Detail

Sections
Recommended

/