Simulation of gas phase reactions for microcrystalline silicon films fabricated by PECVD

Bao-hua He, Shi-e Yang, Yong-sheng Chen, Jing-xiao Lu

Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (3) : 198-201.

Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (3) : 198-201. DOI: 10.1007/s11801-011-0127-7
Article

Simulation of gas phase reactions for microcrystalline silicon films fabricated by PECVD

Author information +
History +

Abstract

We present a numerical gas phase reaction model for hydrogenated microcrystalline silicon (μc-Si:H) films from SiH4 and H2 gas mixtures with plasma enhanced chemical vapor deposition (PECVD). Under the typical μc-Si:H deposition conditions, the concentrations of the species in the plasma are calculated and the effects of silane fraction (SF=[SiH4]/[H2+SiH4]) are investigated. The results show that SiH3 is the key precursor for μc-Si:H films growth, and other neutral radicals, such as Si2H5, Si2H4 and SiH2, may play some roles in the film deposition. With the silane fraction increasing, the precursor concentration increases, but H atom concentration decreases rapidly, which results in the lower H/SiH3 ratio.

Keywords

Film Growth / Plasma Enhance Chemical Vapor Deposition / Crystalline Fraction / Neutral Radical / Silane Fraction

Cite this article

Download citation ▾
Bao-hua He, Shi-e Yang, Yong-sheng Chen, Jing-xiao Lu. Simulation of gas phase reactions for microcrystalline silicon films fabricated by PECVD. Optoelectronics Letters, 2011, 7(3): 198‒201 https://doi.org/10.1007/s11801-011-0127-7

References

[1]
MatsudaA.. Thin Solid Films, 1999, 337: 1
CrossRef Google scholar
[2]
KesselsW. M. M., NadirK., van de SandenM. C. M.. J. Appl. Phys., 2006, 99: 110
CrossRef Google scholar
[3]
AmanatidesE., StamouS., MatarasD.. J. Appl. Phys., 2001, 90: 5786
CrossRef Google scholar
[4]
Joon-YongL., Jong-HwanY.. Solid State Communi cations, 2004, 132: 627
CrossRef Google scholar
[5]
NienhuisaG. J., GoedheerW. J., HamersE. A. G.. J. Appl. Phys., 1997, 82: 2060
CrossRef Google scholar
[6]
De KathleenB., AnnemieB., WimG., RenaatG.. IEEE Transactions on Plasma Science, 2004, 32: 691
CrossRef Google scholar
[7]
ZhangF.-r., ZhangX.-d., AmanatidesE., MatrasD., ZhaoY.. Journal of Optoelectronics Laser, 2008, 19: 208
[8]
KojiS., YasuyukiK.. J. Appl. Phys., 2005, 97: 23308
CrossRef Google scholar
[9]
MoravejM., BabayanS. E., NowlingG. R., YangX., HicksR. F.. Plasma Sources Science and Technology, 2004, 13: 8
CrossRef Google scholar
[10]
KushnerM. J.. J. Appl. Phys., 1988, 63: 25
CrossRef Google scholar
[11]
AllenW. N., ChengT. M. H., LampeF. W.. J. Chem. Phys., 1997, 66: 3371
CrossRef Google scholar
[12]
MaiY.. Microcrystalline Silicon Layers for Thin Film Solar Cells Prepared with PECVD and HWCVD, 2006, Tianjin, Photonics Research Institute, Nankai University: 46
[13]
SriramanS., AgarwalS., AydilE. S., MaroudasD.. Nature, 2002, 418: 6265
CrossRef Google scholar
[14]
KesselsW. M. M., van de SandenM. C. M., SeverensR. J., SchramD. C.. J. Appl. Phys., 2000, 87: 3313
CrossRef Google scholar
[15]
ZhuF., ZhangX., ZhaoY., WeiC., SunJ., GengX.. Chinese Journal of Semiconductors, 2004, 25: 1624
[16]
RathJ. K., FrankenR. H. J., GordijnA., SchroppR. E. I., GoedheerW. J.. Journal of Non-Crystalline Solids, 2004, 60: 338

This work has been supported by the State Key Development Program for Basic Research of China (No.2006CB202601), the National Natural Science Foundation of China (No.51007082), and the Natural Science Foundation of Henan Province (No.072300410080).

Accesses

Citations

Detail

Sections
Recommended

/