Beam conditions for radiation generated by an electromagnetic Hermite-Gaussian model source

Jia Li , Yu Xin , Yan-ru Chen

Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (1) : 77 -80.

PDF
Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (1) : 77 -80. DOI: 10.1007/s11801-011-0125-9
Article

Beam conditions for radiation generated by an electromagnetic Hermite-Gaussian model source

Author information +
History +
PDF

Abstract

Within the framework of the correlation theory of electromagnetic laser beams, the far field cross-spectral density matrix of the light radiated from an electromagnetic Hermite-Gaussian model source is derived. By utilizing the convergence property of Hermite polynomials, the conditions of the matrices for the source to generate an electromagnetic Hermite-Gaussian beam are obtained. Furthermore, in order to generate a scalar Hermite-Gaussian model beam, it is required that the source should be locally rather coherent in the spatial domain.

Keywords

Model Source / Model Beam / Hermite Polynomial / Mode Beam / Electric Field Component

Cite this article

Download citation ▾
Jia Li, Yu Xin, Yan-ru Chen. Beam conditions for radiation generated by an electromagnetic Hermite-Gaussian model source. Optoelectronics Letters, 2011, 7(1): 77-80 DOI:10.1007/s11801-011-0125-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SiegmanA. E.. J. Opt. Soc. Am., 1973, 63: 1093

[2]

ZaudererE.. J. Opt. Soc. Am. A, 1986, 3: 465

[3]

YokotaM., TakenakaT., FukumitsuO.. J. Opt. Soc. Am. A, 1986, 3: 580

[4]

YokotaM., HeS., TakenakaT.. J. Opt. Soc. Am. A, 2001, 18: 1681

[5]

YoungC. Y., GilchrestY. V., MaconB. R.. Opt. Eng., 2002, 41: 1097

[6]

CaiY., ChenC.. J. Opt. Soc. Am. A, 2007, 24: 2394

[7]

MeyrathT. P., SchreckF., HanssenJ. L., ChuuC. S., RaizenM. G.. Opt. Express, 2005, 13: 2843

[8]

MandelL., WolfE.. Optical Coherence and Quantum Optics, 1995, New York, Cambridge U. Press

[9]

KorotkovaO., SalemM., WolfE.. Opt. Lett., 2004, 29: 1173

[10]

WuG., LouQ., ZhouJ., GuoH., ZhaoH., YuanZ.. Opt. Lett., 2008, 33: 2677

[11]

WolfE.. Opt. Commun., 2006, 265: 60

[12]

WolfE.. Phys. Lett. A, 2003, 312: 263

[13]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, 1970.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/